SPA70
(Synonyms: Specific PXR Antagonist 70) 目录号 : GC49281A PXR antagonist
Cas No.:931314-31-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >90.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
SPA70 is a pregnane X receptor (PXR) antagonist (IC50 = 0.51 µM).1 It is selective for PXR over 10 additional nuclear receptors at concentrations greater than 5 µM, as well as over a panel of 384 kinases at 10 µM. SPA70 (0.1-10 µM) inhibits PXR activation induced by rifampicin in HEK293 cells expressing the human receptor. It also inhibits rifampicin-induced activity of the PXR target cytochrome P450 (CYP) isoform 3A4 (CYP3A4) in primary human hepatocytes. SPA70 (200 mg/kg) inhibits PXR agonist-induced CYP3A4-mediated metabolism of midazolam and paclitaxel in human PXR transgenic (hPXR-tg) mice.
1.Lin, W., Wang, Y.-M., Chai, S.C., et al.SPA70 is a potent antagonist of human pregnane X receptorNat. Commun.8(1)741(2017)
Cas No. | 931314-31-7 | SDF | |
别名 | Specific PXR Antagonist 70 | ||
Canonical SMILES | COC1=CC(N2N=NC(S(C3=CC=C(C(C)(C)C)C=C3)(=O)=O)=C2C)=C(OC)C=C1 | ||
分子式 | C21H25N3O4S | 分子量 | 415.5 |
溶解度 | Chloroform: 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4067 mL | 12.0337 mL | 24.0674 mL |
5 mM | 0.4813 mL | 2.4067 mL | 4.8135 mL |
10 mM | 0.2407 mL | 1.2034 mL | 2.4067 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
SPA70 is a potent antagonist of human pregnane X receptor
Nat Commun 2017 Sep 29;8(1):741.PMID:28963450DOI:10.1038/s41467-017-00780-5.
Many drugs bind to and activate human pregnane X receptor (hPXR) to upregulate drug-metabolizing enzymes, resulting in decreased drug efficacy and increased resistance. This suggests that hPXR antagonists have therapeutic value. Here we report that SPA70 is a potent and selective hPXR antagonist. SPA70 inhibits hPXR in human hepatocytes and humanized mouse models and enhances the chemosensitivity of cancer cells, consistent with the role of hPXR in drug resistance. Unexpectedly, SJB7, a close analog of SPA70, is an hPXR agonist. X-ray crystallography reveals that SJB7 resides in the ligand-binding domain (LBD) of hPXR, interacting with the AF-2 helix to stabilize the LBD for coactivator binding. Differential hydrogen/deuterium exchange analysis demonstrates that SPA70 and SJB7 interact with the hPXR LBD. Docking studies suggest that the lack of the para-methoxy group in SPA70 compromises its interaction with the AF-2, thus explaining its antagonism. SPA70 is an hPXR antagonist and promising therapeutic tool.The xenobiotic-activated human pregnane X receptor (hPXR) regulates drug metabolism. Here the authors develop hPXR modulators, which are of potential therapeutic interest and functionally and structurally characterize the antagonist SPA70 and the structurally related agonist SJB7.
Combination of Paclitaxel and PXR Antagonist SPA70 Reverses Paclitaxel-Resistant Non-Small Cell Lung Cancer
Cells 2022 Oct 1;11(19):3094.PMID:36231056DOI:10.3390/cells11193094.
Paclitaxel (PTX) is one of the most efficient drugs for late-stage non-small cell lung cancer (NSCLC) patients. However, most patients gradually develop resistance to PTX with long-term treatments. The identification of new strategies to reverse PTX resistance in NSCLC is crucially important for the treatment. PTX is an agonist for the pregnane X receptor (PXR) which regulates PTX metabolism. Antagonizing PXR, therefore, may render the NSCLC more sensitive to the PTX treatment. In this study, we investigated the PXR antagonist SPA70 and its role in PTX treatment of NSCLC. In vitro, SPA70 and PTX synergistically inhibited cell growth, migration and invasion in both paclitaxel-sensitive and paclitaxel-resistant A549 and H460 lung cancer cells. Mechanistically, we found PTX and SPA70 cotreatment disassociated PXR from ABCB1 (MDR1, P-gp) promoter, thus inhibiting P-gp expression. Furthermore, the combination regimen synergistically enhanced the interaction between PXR and Tip60, which abrogated Tip60-mediated α-tubulin acetylation, leading to mitosis defect, S-phase arrest and necroptosis/apoptosis. Combination of PXT and SPA70 dramatically inhibited tumor growth in a paclitaxel-resistant A549/TR xenograft tumor model. Taken together, we showed that SPA70 reduced the paclitaxel resistance of NSCLC. The combination regimen of PTX and SPA70 could be potential novel candidates for the treatment of taxane-resistant lung cancer.
Building a Chemical Toolbox for Human Pregnane X Receptor Research: Discovery of Agonists, Inverse Agonists, and Antagonists Among Analogs Based on the Unique Chemical Scaffold of SPA70
J Med Chem 2021 Feb 11;64(3):1733-1761.PMID:33497575DOI:10.1021/acs.jmedchem.0c02201.
Pregnane X receptor (PXR) plays roles in detoxification and other physiological processes. PXR activation may enhance drug metabolism (leading to adverse drug reactions) or inhibit inflammation. Therefore, PXR agonists, antagonists, and inverse agonists may serve as research tools and drug candidates. However, a specific PXR modulator with an associated structure-activity relationship is lacking. Based on the scaffold of specific human PXR (hPXR) antagonist SPA70 (10), we developed 81 SPA70 analogs and evaluated their receptor-binding and cellular activities. Interestingly, analogs with subtle structural differences displayed divergent cellular activities, including agonistic, dual inverse agonistic and antagonistic, antagonistic, and partial agonistic/partial antagonistic activities (as in compounds 111, 10, 97, and 42, respectively). We generated a pharmacophore model that represents 81 SPA70 analogs, and docking models that correlate strong interactions between the compounds and residues in the AF-2 helix with agonistic activity. These compounds are novel chemical tools for studying hPXR.
SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1
ACS Med Chem Lett 2022 Jul 15;13(8):1311-1320.PMID:PMC9377019DOI:10.1021/acsmedchemlett.2c00223.
We previously reported a specific inverse agonist (SPA70) of the nuclear receptor pregnane X receptor (PXR). However, derivatization of SPA70 yielded only agonists and neutral antagonists, suggesting that inverse agonism of PXR is difficult to achieve. Therefore, we sought to design proteolysis targeting chimeras (PROTACs) aimed at inducing PXR degradation. Conjugation of a SPA70 derivative to ligands of the E3 substrate receptor cereblon (CRBN) resulted in one molecule, SJPYT-195, that reduced PXR protein level in an optimized degradation assay described here. Further analysis revealed that SJPYT-195 was a molecular glue degrader of the translation termination factor GSPT1 and that GSPT1 degradation resulted in subsequent reduction of PXR protein. GSPT1 has recently gained interest as an anticancer target, and our results give new insights into chemical determinants of drug-induced GSPT1 degradation. Additionally, we have developed assays and cell models for PXR degrader discovery that can be applied to additional protein targets.
CITCO Directly Binds to and Activates Human Pregnane X Receptor
Mol Pharmacol 2020 Mar;97(3):180-190.PMID:31882411DOI:10.1124/mol.119.118513.
The xenobiotic receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are activated by structurally diverse chemicals to regulate the expression of target genes, and they have overlapping regulation in terms of ligands and target genes. Receptor-selective agonists are, therefore, critical for studying the overlapping function of PXR and CAR. An early effort identified 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) as a selective human CAR (hCAR) agonist, and this has since been widely used to distinguish the function of hCAR from that of human PXR (hPXR). The selectivity was demonstrated in a green monkey kidney cell line, CV-1, in which CITCO displayed >100-fold selectivity for hCAR over hPXR. However, whether the selectivity observed in CV-1 cells also represented CITCO activity in liver cell models was not hitherto investigated. In this study, we showed that CITCO: 1) binds directly to hPXR; 2) activates hPXR in HepG2 cells, with activation being blocked by an hPXR-specific antagonist, SPA70; 3) does not activate mouse PXR; 4) depends on tryptophan-299 to activate hPXR; 5) recruits steroid receptor coactivator 1 to hPXR; 6) activates hPXR in HepaRG cell lines even when hCAR is knocked out; and 7) activates hPXR in primary human hepatocytes. Together, these data indicate that CITCO binds directly to the hPXR ligand-binding domain to activate hPXR. As CITCO has been widely used, its confirmation as a dual agonist for hCAR and hPXR is important for appropriately interpreting existing data and designing future experiments to understand the regulation of hPXR and hCAR. SIGNIFICANCE STATEMENT: The results of this study demonstrate that 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is a dual agonist for human constitutive androstane receptor (hCAR) and human pregnane X receptor (hPXR). As CITCO has been widely used to activate hCAR, and hPXR and hCAR have distinct and overlapping biological functions, these results highlight the value of receptor-selective agonists and the importance of appropriately interpreting data in the context of receptor selectivity of such agonists.