Home>>Lipids>> Sphingolipids>>Sphingosine (d12:1)

Sphingosine (d12:1) Sale

(Synonyms: D-erythro-Sphingosine C12) 目录号 : GC44929

A short-chain sphingolipid

Sphingosine (d12:1) Chemical Structure

Cas No.:128427-86-1

规格 价格 库存 购买数量
500μg
¥2,552.00
现货
1mg
¥4,591.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Sphingosine (d12:1) is a short-chain sphingolipid. It decreases serine palmitoyltransferase activity in primary cultured mouse cerebellar cells in a concentration-dependent manner. Sphingosine (d12:1) (0.5-50 μM) decreases production of sphingosine (d18:1) , lactosylceramide , galactosylceramide , and a variety of gangliosides in mouse cerebellar granule cells.

Chemical Properties

Cas No. 128427-86-1 SDF
别名 D-erythro-Sphingosine C12
Canonical SMILES OC[C@H](N)[C@H](O)/C=C/CCCCCCC
分子式 C12H25NO2 分子量 215.3
溶解度 DMF: 10 mg/mL,DMSO: 2 mg/ml,Ethanol: miscible 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.6447 mL 23.2234 mL 46.4468 mL
5 mM 0.9289 mL 4.6447 mL 9.2894 mL
10 mM 0.4645 mL 2.3223 mL 4.6447 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Signaling pathways involved in Sphingosine kinase activation and sphingosine-1-phosphate release in rat myometrium in late pregnancy: role in the induction of cyclooxygenase 2

Endocrinology 2008 Sep;149(9):4669-79.PMID:18723875DOI:10.1210/en.2007-1756.

We investigated the regulation of the Sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) axis and its role during pregnancy in the rat myometrium. SphK1 and SphK2 were coexpressed in myometrium during gestation. The levels and activity of SphK1/2 were modest at midgestation (d 12), increased at d 19 and progressively declined to low at postpartum. Similar patterns were observed for the phosphorylation of ERK and protein kinase C (PKC). Inhibition of PKC and ERK reduced SphK1/2 activity. In late pregnancy, levels of cyclooxygenase 2 (COX2) increased in parallel to SphK levels. Using a pharmacological approach, we demonstrated that in primary cultures of myometrial cells from d-19 pregnant rats, induction of COX2 was mediated by 4beta-phorbol 12,13-dibutyrate and IL-1beta through sequential activation of PKC, ERK1/2, and SphK1. S1P produced by SphK1 was released in the medium. Addition of S1P, IL-1beta or 4beta-phorbol 12,13-dibutyrate enhanced COX2 levels via Gi protein. Interestingly, S1P was also released by myometrial tissues at late gestation. This event was dependent on PKC/ERK/SphK1. By contrast, in d-12 myometrial tissues, the release of S1P was markedly reduced in association with low levels of SphK1 and COX2. However, prolonged incubation of myometrium from midgestation led to the induction of COX2. This effect was blocked by SphK inhibitors, providing evidence of the close relationship between SphK activity and COX2 induction in rat myometrium. Overall, our findings provided insight into the physiological relevance of the SphK activation and S1P release in uterine smooth muscle during gestation.

Bradykinin-evoked Ca2+ mobilization in Madin Darby canine kidney cells

Eur J Pharmacol 1998 Aug 21;355(2-3):219-33.PMID:9760037DOI:10.1016/s0014-2999(98)00481-6.

We studied the mechanisms underlying the bradykinin-evoked changes in intracellular calcium concentration ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells. Bradykinin evoked a [Ca2+]i transient in a dose-dependent manner, measured by fura-2 fluorimetry and digital video imaging. The transient consisted of a rise and a decay and [Ca2+]i returned to baseline without oscillations. External Ca2+ influx occurred, as demonstrated by Mn2+ quench and external Ca2+ removal measurements. Bradykinin acted by stimulating bradykinin B2 receptors as evidenced by blockade by D-arginyl-L-arginlyl-L-prolyl-trans-4-hydroxy-L-prolylglycyl -3-(2-thienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahydro-3-isoquinolineca rbonyl-L-(2alpha,3beta,7alphabeta)-octahydro-1 H-indole-2-carbonyl-L-arginine (HOE 140) but not by D-arginyl-L-arginlyl-L-prolyl-trans-4-hydroxy-L-proylglycyl- 3-(2-thienyl)-L-alanyl-L-seryl-D-1,2,3,4-tetrahydro-3-isoquinolinecar bonyl-L-(2alpha,3beta,7alphabeta)-octahydro-1 H-indole-2-carbonyl ([Des-Arg]HOE 140). The [Ca2+]i signal was abolished by 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1 H-pyrrole-2,5-dione (U73122) and partially inhibited by neomycin, implying mediation by phospholipase C. The transient was initiated by a release of Ca2+ from internal stores since it was abolished by pretreatment with thapsigargin or cyclopiazonic acid. The mobilization of the internal Ca2+ store subsequently triggered a 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1 H-imidazole hydrochloride (SKF 96365)-insensitive Ca2+ entry. Pretreatment with carbonylcyanide m-chlorophynylhydrozone and gly-phe-beta-naphthylamide did not alter the transient, thus excluding the participation of mitochondria and lysosomes. Efflux via Ca2+ pumps contributed to the decay of the transient. Efflux via Na+/Ca2+ exchange or sequestration by mitochondria and lysosomes was insignificant. The transient was blunted by the protein kinase C activator phorbol 12-myristate 13-acetate, and was enhanced by the protein kinase C inhibitors Sphingosine and chelerythrine, the protein kinase A inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone, N-[2-(p-bromocinnamylamino)ethyl]5-isoquinolinesulfonamide (H-89), the agent 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), and agents that elevated levels of 3',5'-cyclic guanosine monophosphate. The transient did not heterologously desensitize with that evoked by ATP, ADP or UTP.