Sphingosine (d18:1(14Z))
(Synonyms: Sphing-14Z-enine) 目录号 : GC45638An atypical sphingolipid
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Sphingosine (d18:1(14Z)) is an atypical sphingolipid that contains a cis double bond at the 14-15 position rather than a trans double bond at the 4-5 position as in sphingosine (d18:1) .
Cas No. | N/A | SDF | |
别名 | Sphing-14Z-enine | ||
Canonical SMILES | OC[C@H](N)[C@H](O)CCCCCCCCCC/C=C\CCC | ||
分子式 | C18H37NO2 | 分子量 | 299.5 |
溶解度 | DMF: 10 mg/ml,DMSO: 2 mg/ml,Ethanol: miscible | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3389 mL | 16.6945 mL | 33.389 mL |
5 mM | 0.6678 mL | 3.3389 mL | 6.6778 mL |
10 mM | 0.3339 mL | 1.6694 mL | 3.3389 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Intervention effect of Qi-Yu-San-Long Decoction on Lewis lung carcinoma in C57BL/6 mice: Insights from UPLC-QTOF/MS-based metabolic profiling
J Chromatogr B Analyt Technol Biomed Life Sci 2018 Dec 1;1102-1103:23-33.PMID:30366209DOI:10.1016/j.jchromb.2018.10.013.
Qi-Yu-San-Long Decoction (QYSLD) has been used to treat lung carcinoma for over twenty years in clinical practices, and its curative effect is considered credible. However, the therapeutic mechanism of this effect has not been thoroughly elucidated to date. In this study, a MTT dye reduction assay and DAPI staining were first used to evaluate the cell viability and apoptosis of A549 cells with and without QYSLD-treatment, respectively. The weight/volume of Lewis lung carcinoma (LLC) sarcoma was used to assess the therapeutic effect of QYSLD on LLC mice. Second, an UPLC-QTOF/MS-based untargeted metabolomics method was employed to identify and relatively quantify functional metabolites that were responsible for the intervention effect of QYSLD on LLC. As a result, the MTT dye reduction assay and DAPI staining demonstrated that QYSLD could inhibit the proliferation and induce the apoptosis of A549 cells. The weight/volume test of LLC sarcoma showed that QYSLD could restrain the development of LLC. Next, 21 potential biomarkers that could contribute to the curative mechanism of QYSLD on LLC were screened by the untargeted metabolomics method. The down-regulated metabolites induced by QYSLD included PC(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(20:2(11Z,14Z\)/16:0), PC(22:4(7Z,10Z,13Z,16Z)/14:0), PC(22:5(7Z,10Z,13Z,16Z,19Z)/14:0), arachidonic acid, gamma-glutamylisoleucine, cholesterol sulfate, CL (8:0/10:0/11:0/a-13:0) and CDP-DG (16:0/18:1(11Z)). The up-regulated metabolites were LysoPC(16:0), LysoPC(18:0), LysoPE(18:2(9Z,12Z)/0:0), LysoPE(22:0/0:0), LysoPE(22:1(13Z)/0:0), LysoPE(22:2(13Z,16Z)/0:0), triglylcarnitine, 1‑arachidonoylglycerophosphoinositol, 1‑palmitoylglycerophosphoinositol, 2‑stearoylglycerophosphoinositol, sphingosine 1‑phosphate(d19:1-P) and SM(d18:0/16:1(9Z)). The metabolic pathway analysis revealed that the potential biomarkers were primarily involved in glycerophospholipid metabolism, sphingolipid metabolism, steroid hormone biosynthesis, fatty acid degradation and arachidonic acid metabolism. This study demonstrated that QYSLD has a good antitumor effect and that a UPLC-QTOF/MS-based untargeted metabolomics method is a promising means of elucidating the intervention mechanism of traditional Chinese medicine formulas.
Untargeted metabolomics profiles delineate metabolic alterations in mouse plasma during lung carcinoma development using UPLC-QTOF/MS in MSE mode
R Soc Open Sci 2018 Sep 19;5(9):181143.PMID:30839735DOI:10.1098/rsos.181143.
In this work, an untargeted metabolomic method based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) in MSE (E represents collision energy) mode was exploited to determine the dynamic metabolic alterations in the plasma of male C57BL/6 mice during the onset and development of lung carcinoma. Plasma samples were collected from control and model mice (male C57BL/6 mice experimentally inoculated with the Lewis lung carcinoma cells) at 7 and 14 days post-inoculation (DPI). As a result, 15 dysregulated metabolites, including cholesterol sulphate, tiglylcarnitine, 1-palmitoylglycerophosphoinositol, 2-stearoylglycerophosphoinositol, stearoylcarnitine, PC(20:2(11Z,14Z\)/16:0), PC(22:4(7Z,10Z,13Z,16Z)/14:0), PC(22:5(7Z,10Z,13Z,16Z,19Z)/14:0), PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), 12,20-Dioxo-leukotriene B4, sphingosine 1-phosphate(d19:1-P), sphingomyelin(d18:0/16:1(9Z)), lysoPC(16:0), lysoPC(18:0) and lysoPC(20:4(5Z,8Z,11Z,14Z\)), were identified in the plasma of model mice with xenografts at both 7 and 14 DPI. All the altered metabolites associated with the onset and development of lung carcinoma were involved in the metabolism of glycerophospholipid, fatty acid, sphingolipid and arachidonic acid. The feasible utility of these endogenous biomarkers as potential diagnostic indicators was validated through receiver operating characteristic curve analysis. Collectively, these findings provide a systematic view of metabolic changes linked to the onset and development of lung carcinoma.