sulfo-SPDB
目录号 : GC39447sulfo-SPDB 是一种可降解 (cleavable) 的 ADC linker,可用于合成抗体偶联药物 (ADC)。
Cas No.:1193111-39-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
sulfo-SPDB is a cleavable ADC linker used in the synthesis of antibody-drug conjugates (ADCs)[1].
[1]. Beck A, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017 May;16(5):315-337.
Cas No. | 1193111-39-5 | SDF | |
Canonical SMILES | O=C(ON1C(CCC1=O)=O)C(S(=O)(O)=O)CCSSC2=NC=CC=C2 | ||
分子式 | C13H14N2O7S3 | 分子量 | 406.45 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4603 mL | 12.3016 mL | 24.6033 mL |
5 mM | 0.4921 mL | 2.4603 mL | 4.9207 mL |
10 mM | 0.246 mL | 1.2302 mL | 2.4603 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
IMGN853, a Folate Receptor-α (FRα)-Targeting Antibody-Drug Conjugate, Exhibits Potent Targeted Antitumor Activity against FRα-Expressing Tumors
Mol Cancer Ther 2015 Jul;14(7):1605-13.PMID:25904506DOI:10.1158/1535-7163.MCT-14-1095.
A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.
The novel CD19-targeting antibody-drug conjugate huB4-DGN462 shows improved anti-tumor activity compared to SAR3419 in CD19-positive lymphoma and leukemia models
Haematologica 2019 Aug;104(8):1633-1639.PMID:30733273DOI:10.3324/haematol.2018.211011.
Antibody-drug conjugates (ADC) are a novel way to deliver potent cytotoxic compounds to cells expressing a specific antigen. Four ADC targeting CD19, including SAR3419 (coltuximab ravtansine), have entered clinical development. Here, we present huB4-DGN462, a novel ADC based on the SAR3419 anti-CD19 antibody linked via sulfo-SPDB to the potent DNA-alkylating agent DGN462. huB4-DGN462 had improved in vitro anti-proliferative and cytotoxic activity compared to SAR3419 across multiple B-cell lymphoma and human acute lymphoblastic leukemia cell lines. In vivo experiments using lymphoma xenografts models confirmed the in vitro data. The response of B-cell lymphoma lines to huB4-DGN462 was not correlated with CD19 expression, the presence of BCL2 or MYC translocations, TP53 inactivation or lymphoma histology. In conclusion, huB4-DGN462 is an attractive candidate for clinical investigation in patients with B-cell malignancies.
The impact of trisulfide modification of antibodies on the properties of antibody-drug conjugates manufactured using thiol chemistry
MAbs 2017 Apr;9(3):490-497.PMID:28136017DOI:10.1080/19420862.2017.1285478.
Antibody-drug conjugates (ADCs) are promising biotherapeutic agents for the treatment of cancer. The careful monitoring of critical quality attributes is important for ADCs' development, manufacturing and production. In this work, the effect of the presence of a trisulfide bond in the monoclonal antibody (mAb) conjugated to DM4 cytotoxic payload through a disulfide-bond linker sulfo-SPDB (sSPDB) was investigated. Three lots of antibody containing variable levels of trisulfide bonds were used. The identity and levels of trisulfide bonds were determined by liquid chromatography/ mass spectrometry (MS)/MS analysis. The antibodies were conjugated to sSPDB-DM4 to generate ADCs. Further analysis indicated that the drug-to-antibody ratio (DAR) value, a critical quality attribute, slightly increased for the conjugates made from antibody containing higher levels of trisulfide bond. Also, higher fragmentation levels were observed in the conjugates with more trisulfide bond. Detailed characterization by MS revealed that a small amount of DM4 payload was directly attached to inter-chain cysteine residues by disulfide or trisulfide bonds. Overall, our investigation indicated that the trisulfide bond present in the mAb could react with DM4 during the conjugation process. Therefore, the presence of trisulfide bonds in the antibody moiety should be carefully monitored and well controlled during the development of a maytansinoid ADC.