T-2 Triol
(Synonyms: T-2三醇) 目录号 : GC44982An active metabolite of T-2 toxin
Cas No.:34114-98-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
T-2 Triol is a group A trichothecene mycotoxin derived by the metabolism of T-2 toxin . It is less toxic than T-2 toxin.
Cas No. | 34114-98-2 | SDF | |
别名 | T-2三醇 | ||
Canonical SMILES | CC1=C[C@]2([H])[C@]([C@]([C@H](O)[C@H]3O)(C)[C@@]4(OC4)[C@]3([H])O2)(CO)C[C@@H]1OC(CC(C)C)=O | ||
分子式 | C20H30O7 | 分子量 | 382.5 |
溶解度 | Dichloromethane: 10 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6144 mL | 13.0719 mL | 26.1438 mL |
5 mM | 0.5229 mL | 2.6144 mL | 5.2288 mL |
10 mM | 0.2614 mL | 1.3072 mL | 2.6144 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Large-scale production of selected type A trichothecenes: the use of HT-2 toxin and T-2 Triol as precursors for the synthesis of d 3-T-2 and d 3-HT-2 toxin
Mycotoxin Res 2009 Mar;25(1):41-52.PMID:23604935DOI:10.1007/s12550-009-0006-2.
The type A trichothecenes T-2 and HT-2 toxins are toxic secondary metabolites produced by fungi of the Fusarium genus. Their occurrence in cereals, especially in oats, implies health risks for the consumer. Therefore, it is an important task to develop selective and sensitive methods for the analysis of T-2 and HT-2 toxins, and to undertake further studies on their stability and toxicity. Although most toxins are commercially available, their high prices are the limiting factor on the realization of these experiments. Thus, we developed a method for large-scale production of T-2 and HT-2 toxin as well as T-2 Triol and T-2 tetraol. T-2 toxin was obtained in gram quantities by biosynthetic production with cultures of F. sporotrichioides. As HT-2 toxin was only formed as a by-product, and T-2 Triol and T-2 tetraol were not generated, these compounds were produced by alkaline hydrolysis of T-2 toxin. Separation and isolation of crude toxins was achieved by fast centrifugal partition chromatography (FCPC), which is an efficient tool for the large-scale purification of natural products. Using this fast and yield effective technique, several hundred milligrams of HT-2 toxin, T-2 Triol, and T-2 tetraol were obtained. Subsequent, HT-2 toxin and T-2 Triol were used for the large-scale synthesis of isotope-labeled T-2 and HT-2 toxin, respectively. Using these standards, an isotope dilution-(ID)-HPLC-MS/MS method for the quantification of T-2 and HT-2 toxin in different matrices was developed.
Distribution of T-2 toxin and HT-2 toxin during experimental feeding of yellow mealworm (Tenebrio molitor)
Mycotoxin Res 2021 Feb;37(1):11-21.PMID:32990831DOI:10.1007/s12550-020-00411-x.
Within the European Union (EU), edible insects need to be approved as "Novel Food" according to Regulation (EU) 2015/2283 and must comply with the requirements of European food law with regard to microbiological and chemical food safety. Substrates used for feeding insects are susceptible to the growth of Fusarium spp. and consequently to contamination with trichothecene mycotoxins. Therefore, the current study aimed to investigate the influence of T-2 and HT-2 toxins on the larval life cycle of yellow mealworm (Tenebrio molitor (L.)) and to study the transfer of T-2, HT-2, T-2 Triol and T-2 tetraol in the larvae. In a 4-week feeding study, T. molitor larvae were kept either on naturally (oat flakes moulded with Fusarium sporotrichioides) or artificially contaminated oat flakes, each at two levels (approximately 100 and 250 μg/kg total T-2 and HT-2). Weight gain and survival rates were monitored, and mycotoxins in the feeding substrates, larvae and residues were determined using LC-MS/MS. Larval development varied between the diets and was 44% higher for larvae fed artificially contaminated diets. However, the artificially contaminated diets had a 16% lower survival rate. No trichothecenes were detected in the surviving larvae after harvest, but T-2 and HT-2 were found both in the dead larvae and in the residues of naturally and artificially contaminated diets.
Interactions between T-2 toxin and its metabolites in HepG2 cells and in silico approach
Food Chem Toxicol 2021 Feb;148:111942.PMID:33359025DOI:10.1016/j.fct.2020.111942.
The T-2 toxin (T-2) is commonly metabolized to HT-2 toxin (HT-2), Neosolaniol (NEO), T2-triol and T2-tetraol and they can modify the toxicity of T-2. In this study, T-2 and its modified forms were evaluated by in vitro and in silico methods. The in vitro cytotoxicity individually was evaluated by MTT and Total Protein Content (PC) assays in human hepatocarcinoma (HepG2) cells. The order of IC50 was T-2 tetraol > T-2 Triol > NEO > T-2 = HT-2. The T-2 and HT-2 evidenced the highest cytotoxic effect in HepG2 cells individually. No differences were observed in binary combinations tested and the two mycotoxins in the mixture tested individually. The T-2+HT-2 combination showed the highest toxic potential with the lowest IC50 value of 34.42 ± 0.58 nM at 24 h. All binary combinations exhibited antagonistic interactions. The ADME and toxicity profile of mycotoxins were obtained by the in silico admetSAR predictive model which determines the metabolic and toxicological approaches in order to know if these mycotoxins might be taken into consideration to support a more realistic and adequate risk assessment.
Human Biomonitoring of T-2 Toxin, T-2 Toxin-3-Glucoside and Their Metabolites in Urine through High-Resolution Mass Spectrometry
Toxins (Basel) 2021 Dec 5;13(12):869.PMID:34941707DOI:10.3390/toxins13120869.
The metabolic profile of T-2 toxin (T-2) and its modified form T-2-3-glucoside (T-2-3-Glc) remain unexplored in human samples. Therefore, the present study aimed to investigate the presence of T-2, T-2-3-Glc and their respective major metabolites in human urine samples (n = 300) collected in South Italy through an ultra-high performance liquid chromatography (UHPLC) coupled to Q-Orbitrap-HRMS methodology. T-2 was quantified in 21% of samples at a mean concentration of 1.34 ng/mg Crea (range: 0.22-6.54 ng/mg Crea). Almost all the major T-2 metabolites previously characterized in vitro were tentatively found, remarking the occurrence of 3'-OH-T-2 (99.7%), T-2 Triol (56%) and HT-2 (30%). Regarding T-2-3-Glc, a low prevalence of the parent mycotoxin (1%) and its metabolites were observed, with HT-2-3-Glc (17%) being the most prevalent compound, although hydroxylated products were also detected. Attending to the large number of testing positive for T-2 or its metabolites, this study found a frequent exposure in Italian population.
Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2, deepoxy T-2 Triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol
Appl Environ Microbiol 1987 Dec;53(12):2821-6.PMID:3435145DOI:10.1128/aem.53.12.2821-2826.1987.
The production of deepoxy metabolites of the trichothecene mycotoxins T-2 toxin and diacetoxyscirpenol, including deepoxy HT-2 (DE HT-2), deepoxy T-2 Triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol is described. The metabolites were prepared by in vitro fermentation with bovine rumen microorganisms under anaerobic conditions and purified by normal and reverse-phase high-pressure liquid chromatography. Capillary gas chromatographic retention times and mass spectra of the derivatized metabolites were obtained. The deepoxy metabolites were significantly less toxic to brine shrimp than were the corresponding epoxy analogs. Polyclonal and monoclonal T-2 antibodies were examined for cross-reactivity to several T-2 metabolites. Both HT-2 and DE HT-2 cross-reacted with mouse immunoglobulin monoclonal antibody 15H6 to a greater extent than did T-2 toxin. Rabbit polyclonal T-2 antibodies displayed greater specificity to T-2 toxin compared with the monoclonal antibody, with relative cross-reactivities of only 17.4, 14.6, and 9.2% for HT-2, DE HT-2, and deepoxy T-2 Triol, respectively. Cross-reactivity of both antibodies was weak for T-2 Triol, T-2 tetraol, 3'OH T-2, and 3'OH HT-2.