TAK-778
(Synonyms: 二乙基4-((6R,8S)-8-甲基-9-氧亚基-5,6,8,9-四氢噻庚英并[4,5:4,5]苯并[1,2-D][1,3]二噁戊环-6-碳杂草酰氨基)苯甲基膦酸基酯) 目录号 : GC34175TAK-778是依普黄酮的衍生物,已显示在体外和体内模型中能诱导骨生长。
Cas No.:180185-61-9
Sample solution is provided at 25 µL, 10mM.
TAK-778 is a derivative of ipriflavone and has been shown to induce bone growth in in vitro and in vivo models.
TAK-778 is a derivative of ipriflavone and has been shown to induce bone growth in in vitro and in vivo models.Continuous treatment with TAK-778 (10 μM) for 1 to 21 days results in an increase in the area of mineralized nodules. TAK-778 at concentrations of 1 μM and higher significantly stimulates the activity of cellular Alkaline phosphatase (ALP). TAK-778 increases slightly but significantly the DNA content of the cells at the confluence stage. Treatment with TAK-778 also results in dose-dependent increases in the amount of soluble collagen and osteocalcin secreted into culture medium from days 5 to 7. TAK-778 enhances the secretion of both TGF-β and IGF-I at every time point during the 21 days of culture. Treatment of the cells with TAK-778 does not induce ALP activity, but does result in a dose-dependent increase in the saturated cell density. TAK-778 at a concentration of 10 μM significantly reduces the saturated cell density[2].
Treatment with a single local application of TAK-778/PLGA-MC (0.2 to 5 mg/site) results in a dose-dependent increase in the radio-opaque area formed in the defect. Histological studies show the defect area is occupied by a bony bridge and the newly-formed radio-opaque area corresponds to a calcified bone containing bone marrow cavities surrounded by thick osteoid seams with cuboidal osteoblasts. There is no significant difference in either of the indices between placebo- or TAK-778/PLGA-MC-treated skulls. Two months after the operation, the TAK-778/PLGA-MC pellets induce radiological osseous union across the defects[2]. Oral treatment of OVX rats with TAK-778 causes a more pronounced increase in bone mineral density (BMD) of the lumbar vertebrae compare to vehicle controls[3].
[1]. Rosa AL, et al. TAK-778 enhances osteoblast differentiation of human bone marrow cells via an estrogen-receptor-dependent pathway. J Cell Biochem. 2004 Mar 1;91(4):749-55. [2]. Notoya K, et al. Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, TAK-778. J Pharmacol Exp Ther. 1999 Sep;290(3):1054-64. [3]. Cai M, et al. TAK-778 induces osteogenesis in ovariectomized rats via an estrogen receptor-dependent pathway. J Bone Miner Metab. 2011 Mar;29(2):168-73.
Cell experiment: | Human bone marrow cells are used and cultured in α-MEM supplemented with 10% fetal bovine serum, 50 mg/mL gentamicin, 0.3 mg/mL fungizone, 100 nM Mdexamethasone, 5 mg/L ascorbic acid, and 7 mM bglycerophosphate. Subconfluent cells in primary culture are harvested after treatment with 1 mM EDTA and 0.25% trypsin and the first passage is subcultured in 24-well culture plates at a cell density of 2×104 cells/well in culture medium containing the same volume of TAK-778 (10 μM), Tamoxifen (10 μM), and TAK-778 (10 μM)+Tamoxifen (10 μM). Cells subcultured in medium supplemented with vehicle are used as a control. During the culture period, cells are incubated at 37°C in a humidified atmosphere of 5% CO2 and 95% air, and the medium is changed every 3 or 4 days[1]. |
Animal experiment: | Eight-week-old female Wistar-Imamichi rats are used in this study. Forty Wistar-Imamichi rats are divided into sham-operated, vehicle, TAK-778, tamoxifen, and combination (TAK-778 and tamoxifen) treatment groups. Two weeks after ovariectomy, animals are orally administered TAK-778 [100 mg/kg body weight (BW), three times per week] and/or tamoxifen (200 mg/kg BW, three times per week) for 3 months. Rats orally administered vehicle and sham operated rats serve as controls. On 13 and 3 days before killing, tetracycline (30 mg/kg BW) or calcein (5 mg/kg BW) is injected subcutaneously, and lumbar vertebrae (L2-L5) are removed for bone analysis[3]. |
References: [1]. Rosa AL, et al. TAK-778 enhances osteoblast differentiation of human bone marrow cells via an estrogen-receptor-dependent pathway. J Cell Biochem. 2004 Mar 1;91(4):749-55. |
Cas No. | 180185-61-9 | SDF | |
别名 | 二乙基4-((6R,8S)-8-甲基-9-氧亚基-5,6,8,9-四氢噻庚英并[4,5:4,5]苯并[1,2-D][1,3]二噁戊环-6-碳杂草酰氨基)苯甲基膦酸基酯 | ||
Canonical SMILES | O=C(NC1=CC=C(CP(OCC)(OCC)=O)C=C1)[C@@H](C2)S[C@@H](C)C(C3=C2C=C4OCOC4=C3)=O | ||
分子式 | C24H28NO7PS | 分子量 | 505.52 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.9782 mL | 9.8908 mL | 19.7816 mL |
5 mM | 0.3956 mL | 1.9782 mL | 3.9563 mL |
10 mM | 0.1978 mL | 0.9891 mL | 1.9782 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet