Tartrazine (Acid Yellow 23)
(Synonyms: 酒石黄; Acid Yellow 23; FD&C Yellow No. 5) 目录号 : GC30256Acid Yellow 23 is a popular colorant for multiple applications, commonly used in ink, pond dyes, and textiles.
Cas No.:1934-21-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Acid Yellow 23 is a popular colorant for multiple applications, commonly used in ink, pond dyes, and textiles.
Cas No. | 1934-21-0 | SDF | |
别名 | 酒石黄; Acid Yellow 23; FD&C Yellow No. 5 | ||
Canonical SMILES | O=C(C(C1N=NC2=CC=C(S(=O)([O-])=O)C=C2)=NN(C3=CC=C(S(=O)([O-])=O)C=C3)C1=O)[O-].[Na+].[Na+].[Na+] | ||
分子式 | C16H9N4Na3O9S2 | 分子量 | 534.36 |
溶解度 | DMSO : 10 mg/mL (18.71 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8714 mL | 9.357 mL | 18.714 mL |
5 mM | 0.3743 mL | 1.8714 mL | 3.7428 mL |
10 mM | 0.1871 mL | 0.9357 mL | 1.8714 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review
Scientific evidence is mounting that synthetic chemicals used as food additives may have harmful impacts on health. Food additives are chemicals that are added to food to keep it from spoiling, as well as to improve its colour and taste. Some are linked to negative health impacts, while others are healthy and can be ingested with little danger. According to several studies, health issues such as asthma, attention deficit hyperactivity disorder (ADHD), heart difficulties, cancer, obesity, and others are caused by harmful additives and preservatives. Some food additives may interfere with hormones and influences growth and development. It is one of the reasons why so many children are overweight. Children are more likely than adults to be exposed to these types of dietary intakes. Several food additives are used by women during pregnancy and breast feeding that are not fully safe. We must take specific precaution to avoid consuming dangerous compounds before they begin to wreak havoc on our health. This study is intended to understand how the preservatives induce different health problem in the body once it is consumed. This review focuses on some specific food additives such as sodium benzoate, aspartame, tartrazine, carrageenan, and potassium benzoate, as well as vitamin A. Long-term use of food treated with the above-mentioned food preservatives resulted in teratogenicity and other allergens, according to the study. Other health issues can be avoided in the future by using natural food additives derived from plants and other natural sources.
Identification of Tartrazine adulteration and evaluating exposure to synthetic dyes of sunset yellow and Quinoline yellow through consumption of food products among children
Excessive consumption of synthetic food dyes by children may raise concerns about their health. These dyes may aggravate the hyperactivity symptoms and exacerbate asthma in sensitive children. The purpose of this study was to determine the presence of sunset yellow and quinoline yellow dyes, as well as tartrazine in dairy-free fruit ice cream, freeze pop, jelly, and candy. Additionally, we evaluated the amount of two food dyes consumed by children. To do so, a total of 150 food samples, including 20 dairy-free fruit ice creams, 25 freeze pops, 57 jelly products, and 48 types of candy were randomly selected from stores in Shiraz, Iran. Then, using the high-performance liquid chromatography (HPLC) method and an ultraviolet (UV) detector, we measured the amounts of sunset yellow and quinoline yellow dyes and identified the use of tartrazine. Also, the per capita consumption (grams per day) of the mentioned foods was calculated using a checklist in two groups of male and female primary schoolchildren aged 6-9 years and 10-13 years in Shiraz, Iran. According to the results, 11 (7.33%) samples contained only tartrazine and 107 (71.33%) samples contained quinoline yellow and sunset yellow synthetic dyes. In addition, of 107 samples that used quinoline yellow and sunset yellow, 102 (95.33%) contained unauthorized tartrazine. Only seven (6.54%) samples contained exceedingly high concentrations of authorized quinoline yellow and sunset yellow synthetic dyes. However, the exposure assessment showed that the intake of quinoline yellow and sunset yellow was at average levels and the 95th percentile in both age groups was less than the associated acceptable daily intake (ADI). For synthetic dyes, the target hazard quotient (THQ) and hazard index (HI) were less than one, indicating that ingestion of these two dyes via food products does not pose a risk to children's overall health.
Rapid Tartrazine Determination in Large Yellow Croaker with Ag Nanowires Using Surface-Enhanced Raman Spectroscopy
In this work, surface-enhanced Raman spectroscopy (SERS) technology coupled with Ag nanowires was shown to be a promising tool in the detection of tartrazine in large yellow croaker for the first time. Ag nanowires with a uniform diameter were fabricated by an efficient and manageable polyol method. The partial least square model was established for the quantitative analysis of tartrazine, which showed a relatively high linear correlation between actual and predicted concentrations of standard tartrazine solutions. An optimal sample preparation method was also selected and used to extract tartrazine from large yellow croaker within 20 min. The lowest concentration detected was 20.38 ng/cm?, which fully meets the requirements of tartrazine testing in aquatic products. This study indicated that SERS technology combined with the as-prepared Ag nanowires could detect tartrazine sensitively and provide an easily operable and time-saving way to monitor tartrazine in large yellow croaker.
Tartrazine: a yellow hazard
Tartrazine sensitivity
Tartrazine (FD & C Yellow No. 5) is an approved azo dye present in many drugs and food products. During the 1970s, many cases of tartrazine sensitivity were reported. This led to new regulations that required the listing of azo dyes on package inserts of drugs and on packages of food products. Tartrazine sensitivity is most frequently manifested by urticaria and asthma. Although azo dyes have been implicated in accentuating hyperkinetic syndromes, tartrazine is not considered an offender. Vasculitis, purpura and contact dermatitis infrequently occur as manifestations of tartrazine sensitivity. Cross-sensitivity in aspirin-sensitive and NSAID-sensitive patients may also occur. The mechanism of sensitivity is obscure and has been called pseudoallergic. Management consists mainly of avoidance of drugs and food products that contain tartrazine.