Taurolithocholic Acid 3-sulfate (sodium salt)
(Synonyms: 牛磺石胆酸钠-3-硫酸酯二钠盐) 目录号 : GC44997A metabolite of taurolithocholic acid
Cas No.:64936-83-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Taurolithocholic acid 3-sulfate (TLCA3S) is a metabolite of the conjugated bile acid taurolithocholic acid . TLCA3S has been used to study bile acid transport in cellular models and to induce pancreatitis in mouse models of bile acid infusion pancreatitis.
Cas No. | 64936-83-0 | SDF | |
别名 | 牛磺石胆酸钠-3-硫酸酯二钠盐 | ||
Canonical SMILES | O=C(NCCS([O-])(=O)=O)CC[C@@H](C)[C@@]1([H])CC[C@@]2([H])[C@]3([H])CC[C@]4([H])C[C@H](OS([O-])(=O)=O)CC[C@]4(C)[C@@]3([H])CC[C@@]21C.[Na+].[Na+] | ||
分子式 | C26H43NO8S2•2Na | 分子量 | 607.7 |
溶解度 | DMF: 25 mg/mL,DMSO: 20 mg/mL,Ethanol: 1 mg/ml,PBS (pH 7.2): 1 mg/mL | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.6455 mL | 8.2277 mL | 16.4555 mL |
5 mM | 0.3291 mL | 1.6455 mL | 3.2911 mL |
10 mM | 0.1646 mL | 0.8228 mL | 1.6455 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways
J Ethnopharmacol 2018 Oct 5;224:261-272.PMID:29870787DOI:10.1016/j.jep.2018.06.003.
Ethnopharmacological relevance: Oxidative stress is a prominent feature of clinical acute pancreatitis (AP). Coreopsis tinctoria has been used traditionally to treat pancreas disorders like diabetes mellitus in China and Portugal and its flavonoid-rich fraction contain the main phytochemicals that have antioxidant and anti-inflammatory activities. Aim of the study: To investigate the effects of flavonoids isolated from C. tinctoria on experimental AP and explore the potential mechanism. Materials and methods: LC-MS based online technique was used to analyse and isolate targeted flavonoids from C. tinctoria. Freshly isolated mouse pancreatic acinar cells were treated with taurocholic acid sodium salt hydrate (NaT, 5 mM) with or without flavonoids. Fluorescence microscopy and a plate reader were used to determine necrotic cell death pathway activation (propidium iodide), reactive oxygen species (ROS) production (H2-DCFDA) and ATP depletion (luminescence) where appropriate. AP was induced by 7 repeated intraperitoneal caerulein injections (50 μg/kg) at hourly interval in mice or retrograde infusion of Taurolithocholic Acid 3-sulfate disodium salt (TLCS; 5 mM, 50 μL) into the pancreatic duct in mice or infusion of NaT (3.5%, 1 mL/kg) in rats. A flavonoid was intraperitoneally administered at 0, 4, and 8 h after the first caerulein injection or post-operation. Disease severity, oxidative stress and antioxidant markers were determined. Results: Total flavonoids extract and flavonoids 1-6 (C1-C6) exhibited different capacities in reducing necrotic cell death pathway activation with 0.5 mM C1, (2 R,3 R)-taxifolin 7-O-β-D-glucopyranoside, having the best effect. C1 also significantly reduced NaT-induced ROS production and ATP depletion. C1 at 12.5 mg/kg and 8.7 mg/kg (equivalent to 12.5 mg/kg for mice) significantly reduced histopathological, biochemical and immunological parameters in the caerulein-, TLCS- and NaT-induced AP models, respectively. C1 administration increased pancreatic nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-medicated haeme oxygenase-1 expression and elevated pancreatic antioxidant enzymes superoxide dismutase and glutathione peroxidase levels. Conclusions: Flavonoid C1 from C. tinctoria was protective in experimental AP and this effect may at least in part be attributed to its antioxidant effects by activation of Nrf2-mediated pathways. These results suggest the potential utilisation of C. tinctoria to treat AP.