Home>>Lipids>> Lipid Transport>>Taurolithocholic Acid 3-sulfate (sodium salt)

Taurolithocholic Acid 3-sulfate (sodium salt)

(Synonyms: 牛磺石胆酸钠-3-硫酸酯二钠盐) 目录号 : GC44997

A metabolite of taurolithocholic acid

Taurolithocholic Acid 3-sulfate (sodium salt) Chemical Structure

Cas No.:64936-83-0

规格 价格 库存 购买数量
1mg
¥445.00
现货
5mg
¥1,113.00
现货
10mg
¥1,559.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Taurolithocholic acid 3-sulfate (TLCA3S) is a metabolite of the conjugated bile acid taurolithocholic acid . TLCA3S has been used to study bile acid transport in cellular models and to induce pancreatitis in mouse models of bile acid infusion pancreatitis.

Chemical Properties

Cas No. 64936-83-0 SDF
别名 牛磺石胆酸钠-3-硫酸酯二钠盐
Canonical SMILES O=C(NCCS([O-])(=O)=O)CC[C@@H](C)[C@@]1([H])CC[C@@]2([H])[C@]3([H])CC[C@]4([H])C[C@H](OS([O-])(=O)=O)CC[C@]4(C)[C@@]3([H])CC[C@@]21C.[Na+].[Na+]
分子式 C26H43NO8S2•2Na 分子量 607.7
溶解度 DMF: 25 mg/mL,DMSO: 20 mg/mL,Ethanol: 1 mg/ml,PBS (pH 7.2): 1 mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6455 mL 8.2277 mL 16.4555 mL
5 mM 0.3291 mL 1.6455 mL 3.2911 mL
10 mM 0.1646 mL 0.8228 mL 1.6455 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways

J Ethnopharmacol 2018 Oct 5;224:261-272.PMID:29870787DOI:10.1016/j.jep.2018.06.003.

Ethnopharmacological relevance: Oxidative stress is a prominent feature of clinical acute pancreatitis (AP). Coreopsis tinctoria has been used traditionally to treat pancreas disorders like diabetes mellitus in China and Portugal and its flavonoid-rich fraction contain the main phytochemicals that have antioxidant and anti-inflammatory activities. Aim of the study: To investigate the effects of flavonoids isolated from C. tinctoria on experimental AP and explore the potential mechanism. Materials and methods: LC-MS based online technique was used to analyse and isolate targeted flavonoids from C. tinctoria. Freshly isolated mouse pancreatic acinar cells were treated with taurocholic acid sodium salt hydrate (NaT, 5 mM) with or without flavonoids. Fluorescence microscopy and a plate reader were used to determine necrotic cell death pathway activation (propidium iodide), reactive oxygen species (ROS) production (H2-DCFDA) and ATP depletion (luminescence) where appropriate. AP was induced by 7 repeated intraperitoneal caerulein injections (50 μg/kg) at hourly interval in mice or retrograde infusion of Taurolithocholic Acid 3-sulfate disodium salt (TLCS; 5 mM, 50 μL) into the pancreatic duct in mice or infusion of NaT (3.5%, 1 mL/kg) in rats. A flavonoid was intraperitoneally administered at 0, 4, and 8 h after the first caerulein injection or post-operation. Disease severity, oxidative stress and antioxidant markers were determined. Results: Total flavonoids extract and flavonoids 1-6 (C1-C6) exhibited different capacities in reducing necrotic cell death pathway activation with 0.5 mM C1, (2 R,3 R)-taxifolin 7-O-β-D-glucopyranoside, having the best effect. C1 also significantly reduced NaT-induced ROS production and ATP depletion. C1 at 12.5 mg/kg and 8.7 mg/kg (equivalent to 12.5 mg/kg for mice) significantly reduced histopathological, biochemical and immunological parameters in the caerulein-, TLCS- and NaT-induced AP models, respectively. C1 administration increased pancreatic nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-medicated haeme oxygenase-1 expression and elevated pancreatic antioxidant enzymes superoxide dismutase and glutathione peroxidase levels. Conclusions: Flavonoid C1 from C. tinctoria was protective in experimental AP and this effect may at least in part be attributed to its antioxidant effects by activation of Nrf2-mediated pathways. These results suggest the potential utilisation of C. tinctoria to treat AP.