Home>>Proteins>> Growth Factors>> Macrophage Migration Inhibitory Factor>>Teleocidin A1

Teleocidin A1

(Synonyms: 杀鱼菌素A1,Lyngbyatoxin A) 目录号 : GC40069

A fungal metabolite and tumor promoter

Teleocidin A1 Chemical Structure

Cas No.:70497-14-2

规格 价格 库存 购买数量
1mg
¥4,711.00
现货
5mg
¥14,133.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Teleocidin A1, also known as lyngbyatoxin A, is a fungal metabolite that has been isolated from S. mediocidicus and is the R enantiomer of (S)-teleocidin A. [1] It acts as a tumor promoter, inducing ornithine decarboxylase activity in mouse skin, increasing adhesion of HL-60 human leukemia cells (ED50 = 7 ng/ml), and inducing tumor formation in 87% of mice after 30 weeks when administered at a dose of 3 µg twice per week. [2] Teleocidin A1 also increases the production of prostaglandins and the turnover of choline in HeLa cells when used at concentrations ranging from 6 to 20 ng/ml. [3] It is a substrate for the methyltransferase TleD in Streptomyces where it is converted to teleocidin B.[4]

Reference:
[1]. Sakai, S.-I., Hitotsuyanagi, Y., Aimi, N., et al. Absolute configuration of lyngbyatoxin A (teleocidin A-1) and teleocidin A-2. Tetrahedron Lett. 27(43), 5219-5220 (1986).
[2]. Fujiki, H., and Sugimura, T. New classes of tumor promoters: Teleocidin, aplysiatoxin, and palytoxin. Adv. Cancer Res. 49, 223-264 (1987).
[3]. Sakamoto, H., Terada, M., Fujiki, H., et al. Stimulation of prostaglandin production and choline turnover in HeLa cells by lyngbyatoxin A and dihydroteleocidin B. Biochem. Biophys. Res. Commun. 102(1), 100-107 (1981).
[4]. Yu, F., Li, M., Xu, C., et al. Crystal structure and enantioselectivity of terpene cyclization in SAM-dependent methyltransferase TleD. Biochem. J. 473(23), 4385-4397 (2016).

Chemical Properties

Cas No. 70497-14-2 SDF
别名 杀鱼菌素A1,Lyngbyatoxin A
化学名 (2S,5S)-9-[(1R)-1-ethenyl-1,5-dimethyl-4-hexen-1-yl]-1,2,4,5,6,8-hexahydro-5-(hydroxymethyl)-1-methyl-2-(1-methylethyl)-3H-pyrrolo[4,3,2-gh]-1,4-benzodiazonin-3-one
Canonical SMILES O=C([C@@H](C(C)C)N1C)N[C@H](CO)CC2=CNC3=C([C@](C=C)(C)CC/C=C(C)/C)C=CC1=C32
分子式 C27H39N3O2 分子量 437.6
溶解度 DMF: Soluble, DMSO: Soluble, Ethanol: Soluble, Methanol: Soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2852 mL 11.426 mL 22.8519 mL
5 mM 0.457 mL 2.2852 mL 4.5704 mL
10 mM 0.2285 mL 1.1426 mL 2.2852 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Crystal structure and enantioselectivity of terpene cyclization in SAM-dependent methyltransferase TleD

Biochem J 2016 Dec 1;473(23):4385-4397.PMID:27613858DOI:10.1042/BCJ20160695.

TleD is a SAM (S-adenosyl-l-methionine)-dependent methyltransferase and acts as one of the key enzymes in the teleocidin B biosynthesis pathway. Besides methyl transferring, TleD also rearranges the geranyl and indole moieties of the precursor to form a six-membered ring. Moreover, it does not show homologies with any known terpenoid cyclases. In order to elucidate how such a remarkable reaction could be achieved, we determined the complex crystal structures of TleD and the cofactor analogue S-adenosyl-l-homocysteine with or without the substrate Teleocidin A1. A domain-swapped pattern via an additional N-terminal α-helix is observed in TleD hexamers. Structural comparison and alignment shows that this additional N-terminal α-helix is the common feature of SAM methyltransferase-like cyclases TleD and SpnF. The residue Tyr21 anchors the additional N-terminal α-helix to a 'core SAM-MT fold' and is a key residue for catalytic activity. Molecular dynamics simulation results suggest that the dihedral angle C23-C24-C25-C26 of Teleocidin A1 is preferred to 60-90° in the TleD and substrate complex structure, which tend to adopt a Re-face stereocenter at C25 position after reaction and is according to in vitro enzyme reaction experiments. Our results also demonstrate that methyl transfer can be a new chemical strategy for carbocation formation in the terpene cyclization, which is the key initial step.