Home>>Signaling Pathways>> Neuroscience>> Amyloid β>>TML-6

TML-6 Sale

目录号 : GC63230

TML-6 是一种口服有效的姜黄素衍生物,抑制 β-淀粉样前体蛋白和 β-淀粉样蛋白 (Aβ) 的合成。TML-6 上调 Apo E,抑制 NF-κB 和 mTOR,并增加抗氧化 Nrf2 基因的活性。TML-6 具有用于阿尔茨海默氏病 (AD) 研究的潜力。

TML-6 Chemical Structure

Cas No.:1462868-88-7

规格 价格 库存 购买数量
5 mg
¥3,150.00
现货
10 mg
¥5,220.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

TML-6, an orally active curcumin derivative, inhibits the synthesis of the β-amyloid precursor protein and β-amyloid (Aβ). TML-6 can upregulate Apo E, suppress NF-κB and mTOR, and increase the activity of the anti-oxidative Nrf2 gene. TML-6 has the potential for Alzheimer’s disease (AD) research[1].

TML-6 (0.65-5.24 µg/mL; for 24 h) reduces the protein expression levels of APP and phospho-NF-κB, and induces the protein expression level of ApoE. TML-6 inhibits the mTOR signaling pathway through the suppression of phospho-mTOR[1]. TML-6 (0.31, 0.63, 2.5, 5, 10, 20 μM; 24 h) reveals no cytotoxicity in Huh-7 cells at concentrations below 5 μM and has an IC50 of 4.19 µg/mL (8 μM)[1]. TML-6 (1.05, 2.09, 3.14, 4.19 μg/mL; 24 h) reduces the production of Aβ40 and Aβ42 between 1.05, 2.09 and 3.14 μg/mL (equal to 2, 4 and 6 μM) in a dose-dependent manner in N2a/APPswe cell[1]. TML-6 can exhibit transcriptional activation of the Nrf2 gene in a dose-dependent manner, with the highest activity at a concentration of 1.32 µg/mL[1].

TML-6 (diet; 150 mg/kg/day; for four months) treatment results in significant improvement in learning, suppression of the microglial activation marker Iba-1, and reduction in Aβ in the brain[1]. TML-6 (oral; 150 mg/kg) has a T1/2 of 1.27 hours, a Cmax of 35.9 ng/mL and an AUC of 177 ng•hr/mL[1].

[1]. Ih-Jen Su, et al. A Curcumin Analog Exhibits Multiple Biologic Effects on the Pathogenesis of Alzheimer’s Disease and Improves Behavior, Inflammation, and β-Amyloid Accumulation in a Mouse Model. Int J Mol Sci. 2020 Jul 30;21(15):5459.

Chemical Properties

Cas No. 1462868-88-7 SDF
分子式 C30H37NO7 分子量 523.62
溶解度 DMSO : 120 mg/mL (229.17 mM; Need ultrasonic) 储存条件 4°C, stored under nitrogen
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9098 mL 9.5489 mL 19.0978 mL
5 mM 0.382 mL 1.9098 mL 3.8196 mL
10 mM 0.191 mL 0.9549 mL 1.9098 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The Beneficial Effects of Combining Anti-Aβ Antibody NP106 and Curcumin Analog TML-6 on the Treatment of Alzheimer's Disease in APP/PS1 Mice

Int J Mol Sci 2022 Jan 5;23(1):556.PMID:35008983DOI:10.3390/ijms23010556.

Alzheimer's disease (AD) is a progressive neurodegenerative disease with a multifactorial etiology. A multitarget treatment that modulates multifaceted biological functions might be more effective than a single-target approach. Here, the therapeutic efficacy of combination treatment using anti-Aβ antibody NP106 and curcumin analog TML-6 versus monotherapy was investigated in an APP/PS1 mouse model of AD. Our data demonstrate that both combination treatment and monotherapy attenuated brain Aβ and improved the nesting behavioral deficit to varying degrees. Importantly, the combination treatment group had the lowest Aβ levels, and insoluble forms of Aβ were reduced most effectively. The nesting performance of APP/PS1 mice receiving combination treatment was better than that of other APP/PS1 groups. Further findings indicate that enhanced microglial Aβ phagocytosis and lower levels of proinflammatory cytokines were concurrent with the aforementioned effects of NP106 in combination with TML-6. Intriguingly, combination treatment also normalized the gut microbiota of APP/PS1 mice to levels resembling the wild-type control. Taken together, combination treatment outperformed NP106 or TML-6 monotherapy in ameliorating Aβ pathology and the nesting behavioral deficit in APP/PS1 mice. The superior effect might result from a more potent modulation of microglial function, cerebral inflammation, and the gut microbiota. This innovative treatment paradigm confers a new avenue to develop more efficacious AD treatments.

A Curcumin Analog Exhibits Multiple Biologic Effects on the Pathogenesis of Alzheimer's Disease and Improves Behavior, Inflammation, and β-Amyloid Accumulation in a Mouse Model

Int J Mol Sci 2020 Jul 30;21(15):5459.PMID:32751716DOI:10.3390/ijms21155459.

Drugs for the treatment of Alzheimer's disease (AD) are in urgent demand due to the unmet need and the social burden associated with the disease. Curcumin has been historically considered as a beneficial product for anti-aging and AD. However, many efforts to develop curcumin for clinical use are hindered mainly due to its poor bioavailability. Recent development in drug delivery and structural design has resolved these issues. In this study, we identified a small molecule, TML-6, as a potential drug candidate for AD through screening a panel of curcumin derivatives using six biomarker platforms related to aging biology and AD pathogenesis. The structural modification of TML-6 is designed to improve the stability and metabolism of curcumin. Cell biological studies demonstrated that TML-6 could inhibit the synthesis of the β-amyloid precursor protein and β-amyloid (Aβ), upregulate Apo E, suppress NF-κB and mTOR, and increase the activity of the anti-oxidative Nrf2 gene. In the 3x-Tg AD animal model, TML-6 treatment resulted in significant improvement in learning, suppression of the microglial activation marker Iba-1, and reduction in Aβ in the brain. Although TML-6 exhibited a greater improvement in bioavailability as compared to curcumin, formulation optimization and toxicological studies are under development to assure its druggability. Taken together, TML-6 meets the current strategy to develop therapeutics for AD, targeting the combination of the Aβ cascade and aging-related biology processes.