Ustekinumab (Anti-Human IL-12/IL-23, Human Antibody)
(Synonyms: 乌司奴单抗,Anti-Human IL-12/IL-23, Human Antibody) 目录号 : GC34213Ustekinumab (Stelara, CNTO 1275) is an anti-IL-12/IL-23 IgG1κ human monoclonal antibody used to treat psoriasis. MW=145.6 kDa.
Cas No.:815610-63-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
-
Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cell experiment: |
HUVECs are grown on calibrated glass coverslips to a confluency of 80%. Subsequently, cells are incubated with 200 µg/mL Ustekinumab AlexaFluor488 and Briakinumab AlexaFluor594 for 20 min at 37°C, pH 7.3, washed three times, and chased in fresh medium for an additional 20 min before fixation. Antibodies are directly labeled. FcRn binding is quality controlled by SPR analysis. Cells are then counterstained with anti-FcRn monoclonal antibody DVN22, followed by anti-mouse secondary antibodies conjugated to AlexaFluor647. Imaging is performed on a Leica SP8 confocal microscope[2]. |
References: [1]. Montepaone M, et al. Profile of ustekinumab and its potential in the treatment of active psoriatic arthritis. Open Access Rheumatol. 2014 Feb 20;6:7-13. |
Ustekinumab (Stelara, CNTO 1275) is an anti-IL-12/IL-23 IgG1κ human monoclonal antibody used to treat psoriasis. MW=145.6 kDa.
The addition of Ustekinumab (UST) significantly inhibits T follicular helper (TFH) cell differentiation in vitro.[1]
Ustekinumab is generated via recombinant human IL-12 immunization of human Ig (hu-Ig) transgenic mice. Ustekinumab binds to the p40 subunit common to IL-12 and IL-23 and prevents their interaction with the IL-12 receptor β1 subunit of the IL-12 and IL-23 receptor complexes.[2]
[1] Anna-Maria Globig, et al. Cell Mol Gastroenterol Hepatol. 2021;11(1):1-12. [2] Jacqueline M Benson, et al. MAbs. Nov-Dec 2011;3(6):535-45.
Cas No. | 815610-63-0 | SDF | |
别名 | 乌司奴单抗,Anti-Human IL-12/IL-23, Human Antibody | ||
Canonical SMILES | [Ustekinumab] | ||
分子式 | 分子量 | 145625.97 | |
溶解度 | Soluble in DMSO | 储存条件 | Store at -80°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 0.0069 mL | 0.0343 mL | 0.0687 mL |
5 mM | 0.0014 mL | 0.0069 mL | 0.0137 mL |
10 mM | 0.0007 mL | 0.0034 mL | 0.0069 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Development and Translational Application of a Minimal Physiologically Based Pharmacokinetic Model for a Monoclonal Antibody against Interleukin 23 (IL-23) in IL-23-Induced Psoriasis-Like Mice
J Pharmacol Exp Ther 2018 Apr;365(1):140-155.PMID:29420255DOI:10.1124/jpet.117.244855
The interleukin (IL)-23/Th17/IL-17 immune pathway has been identified to play an important role in the pathogenesis of psoriasis. Many therapeutic proteins targeting IL-23 or IL-17 are currently under development for the treatment of psoriasis. In the present study, a mechanistic pharmacokinetics (PK)/pharmacodynamics (PD) study was conducted to assess the target-binding and disposition kinetics of a monoclonal antibody (mAb), CNTO 3723, and its soluble target, mouse IL-23, in an IL-23-induced psoriasis-like mouse model. A minimal physiologically based pharmacokinetic model with target-mediated drug disposition features was developed to quantitatively assess the kinetics and interrelationship between CNTO 3723 and exogenously administered, recombinant mouse IL-23 in both serum and lesional skin site. Furthermore, translational applications of the developed model were evaluated with incorporation of human PK for Ustekinumab, an anti-human IL-23/IL-12 mAb developed for treatment of psoriasis, and human disease pathophysiology information in psoriatic patients. The results agreed well with the observed clinical data for Ustekinumab. Our work provides an example on how mechanism-based PK/PD modeling can be applied during early drug discovery and how preclinical data can be used for human efficacious dose projection and guide decision making during early clinical development of therapeutic proteins.