Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Potassium Channel>>VU0463271

VU0463271 Sale

目录号 : GC33689

VU0463271是神经特异性氯钾协同转运蛋白2(KCC2)的有效抑制剂,其IC50值为61nM。

VU0463271 Chemical Structure

Cas No.:1391737-01-1

规格 价格 库存 购买数量
5 mg
¥810.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

VU0463271 is a potent KCC2 antagonist, with an IC50 of 61 nM.

VU0463271 is a potent antagonist of the neuronal-specific potassium-chloride cotransporter 2 (KCC2), with an IC50 of 61 nM and >100-fold selectivity versus the closely related Na-K-2Cl cotransporter 1 (NKCC1) and no activity in a larger panel of GPCRs, ion channels and transporters. It is also found rapidly cleared in vitro[1].

VU0463271 is found to be a moderate-to-high clearance compound in rat (CL=57 mL/min/kg) following intravenous administration (1 mg/kg); the low volume of distribution at steady state (Vss 0.4 L/kg), coupled with moderate-to-high clearance produce a relatively short t1/2 (9 min) in vivo[1].

[1]. Delpire E, et al. Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: development of a highly selective and more potent in vitro probe. Bioorg Med Chem Lett. 2012 Jul 15;22(14):4532-5.

Chemical Properties

Cas No. 1391737-01-1 SDF
Canonical SMILES O=C(N(C1CC1)C2=NC(C)=CS2)CSC3=NN=C(C4=CC=CC=C4)C=C3
分子式 C19H18N4OS2 分子量 382.5
溶解度 DMSO : 25 mg/mL (65.36 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6144 mL 13.0719 mL 26.1438 mL
5 mM 0.5229 mL 2.6144 mL 5.2288 mL
10 mM 0.2614 mL 1.3072 mL 2.6144 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The role of KCC2 in hyperexcitability of the neonatal brain

Neurosci Lett 2020 Nov 1;738:135324.PMID:32860887DOI:10.1016/j.neulet.2020.135324.

Background: The hyperpolarizing activity of γ-aminobutyric acid A (GABAA) receptors depends on the intracellular chloride gradient that is developmentally regulated by the activity of the chloride extruder potassium (K) chloride (Cl) cotransporter 2 (KCC2). In humans and rodents, KCC2 expression can be detected at birth. In rodents, KCC2 expression progressively increases and reaches adult-like levels by the second postnatal week of life. Several studies report changes in KCC2 expression levels in response to early-life injuries. However, the functional contribution of KCC2 in maintaining the excitation-inhibition balance in the neonatal brain is not clear. In the current study, we examined the effect of KCC2 antagonism on the neonatal brain activity under hyperexcitable conditions ex vivo and in vivo. Methods: Ex vivo electrophysiology experiments were performed on hippocampal slices prepared from 7 to 9 days-old (P7-P9) male rats. Excitability of CA1 pyramidal neurons bathed in zero-Mg2+ buffer was measured using single-unit extracellular (loose) or cell-attach protocol before and after application of VU0463271, a specific antagonist of KCC2. To examine the functional role of KCC2 in vivo, the effect of VU0463271 on hypoxia-ischemia (HI)-induced ictal (seizures and brief runs of epileptiform discharges - BREDs), and inter-ictal spike and sharp-wave activity was measured in P7 male rats. A highly sensitive LC-MS/MS method was used to determine the distribution and the concentration of VU0463271 in the brain. Results: Ex vivo blockade of KCC2 by VU0463271 significantly increased the frequency of zero-Mg2+-triggered spiking in CA1 pyramidal neurons. Similarly, in vivo administration of VU0463271 significantly increased the number of ictal events, BREDs duration, and spike and sharp-wave activity in HI rats. LC-MS/MS data revealed that following systemic administration, VU0463271 rapidly reached brain tissues and distributed well among different brain regions. Conclusion: The results suggest that KCC2 plays a critical functional role in maintaining the balance of excitation-inhibition in the neonatal brain, and thus it can be used as a therapeutic target to ameliorate injury associated with hyperexcitability in newborns.

KCC2 antagonism increases neuronal network excitability but disrupts ictogenesis in vitro

J Neurophysiol 2019 Sep 1;122(3):1163-1173.PMID:31339790DOI:10.1152/jn.00266.2019.

The potassium-chloride cotransporter 2 (KCC2) plays a role in epileptiform synchronization, but it remains unclear how it influences such a process. Here, we used tetrode recordings in the in vitro rat entorhinal cortex (EC) to analyze the effects of the KCC2 antagonist VU0463271 on 4-aminopyridine (4AP)-induced ictal and interictal activity. During 4AP application, ictal events were associated with significant increases in interneurons and principal cells activities. VU0463271 application transformed ictal discharges to shorter ictal-like events that were not accompanied by significant increases in interneuron or principal cell firing. Interictal events persisted during VU0463271 application at an accelerated frequency of occurrence with significant increases in interneuron and principal cell activity. Further analysis revealed that interneuron and principal cell firing rate during 4AP-induced interictal events were increased after VU0463271 application without changes in synchronicity. Overall, our results demonstrate that in the EC, KCC2 antagonism enhances both interneuron and principal cell excitability, while paradoxically decreasing the ability of neuronal networks to generate structured ictal events.NEW & NOTEWORTHY We are the first to use tetrode recordings in the entorhinal cortex to demonstrate that antagonizing potassium-chloride cotransporter 2 (KCC2) function abolishes ictal discharges and the associated, dynamic changes in single-unit firing in the in vitro 4-aminopyrine model of epileptiform synchronization. Interictal discharges were, however, shorter and more frequent during KCC2 antagonism, while the associated single-unit activity increased, suggesting augmented neuronal excitability. Our findings highlight the complex role of KCC2 in disease pathology.

Selective inhibition of KCC2 leads to hyperexcitability and epileptiform discharges in hippocampal slices and in vivo

J Neurosci 2015 May 27;35(21):8291-6.PMID:26019342DOI:10.1523/JNEUROSCI.5205-14.2015.

GABA(A) receptors form Cl(-) permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K(+)/Cl(-) cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl(-) levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization. Here we used the selective KCC2 inhibitor VU0463271 [N-cyclopropyl-N-(4-methyl-2-thiazolyl)-2-[(6-phenyl-3-pyridazinyl)thio]acetamide] to investigate the influence of KCC2 function. Application of VU0463271 caused a reversible depolarizing shift in E(GABA) values and increased spiking of cultured hippocampal neurons. Application of VU0463271 to mouse hippocampal slices under low-Mg(2+) conditions induced unremitting recurrent epileptiform discharges. Finally, microinfusion of VU0463271 alone directly into the mouse dorsal hippocampus rapidly caused epileptiform discharges. Our findings indicated that KCC2 function was a critical inhibitory factor ex vivo and in vivo.

Structure of the human cation-chloride cotransport KCC1 in an outward-open state

Proc Natl Acad Sci U S A 2022 Jul 5;119(27):e2109083119.PMID:35759661DOI:10.1073/pnas.2109083119.

Cation-chloride cotransporters (CCCs) catalyze electroneutral symport of Cl- with Na+ and/or K+ across membranes. CCCs are fundamental in cell volume homeostasis, transepithelia ion movement, maintenance of intracellular Cl- concentration, and neuronal excitability. Here, we present a cryoelectron microscopy structure of human K+-Cl- cotransporter (KCC)1 bound with the VU0463271 inhibitor in an outward-open state. In contrast to many other amino acid-polyamine-organocation transporter cousins, our first outward-open CCC structure reveals that opening the KCC1 extracellular ion permeation path does not involve hinge-bending motions of the transmembrane (TM) 1 and TM6 half-helices. Instead, rocking of TM3 and TM8, together with displacements of TM4, TM9, and a conserved intracellular loop 1 helix, underlie alternate opening and closing of extracellular and cytoplasmic vestibules. We show that KCC1 intriguingly exists in one of two distinct dimeric states via different intersubunit interfaces. Our studies provide a blueprint for understanding the mechanisms of CCCs and their inhibition by small molecule compounds.

KCC2-Mediated Cl- Extrusion Modulates Spontaneous Hippocampal Network Events in Perinatal Rats and Mice

Cell Rep 2019 Jan 29;26(5):1073-1081.e3.PMID:30699338DOI:10.1016/j.celrep.2019.01.011.

It is generally thought that hippocampal neurons of perinatal rats and mice lack transport-functional K-Cl cotransporter KCC2, and that Cl- regulation is dominated by Cl- uptake via the Na-K-2Cl cotransporter NKCC1. Here, we demonstrate a robust enhancement of spontaneous hippocampal network events (giant depolarizing potentials [GDPs]) by the KCC2 inhibitor VU0463271 in neonatal rats and late-gestation, wild-type mouse embryos, but not in their KCC2-null littermates. VU0463271 increased the depolarizing GABAergic synaptic drive onto neonatal CA3 pyramidal neurons, increasing their spiking probability and synchrony during the rising phase of a GDP. Our data indicate that Cl- extrusion by KCC2 is involved in modulation of GDPs already at their developmental onset during the perinatal period in mice and rats.