XMD8-92
(Synonyms: 2-[[2-乙氧基-4-(4-羟基-1-哌啶基)苯基]氨基]-5,11-二氢-5,11-二甲基-6H-嘧啶并[4,5-B][1,4]苯并二氮杂卓-6-酮) 目录号 : GC11076A selective ERK5 inhibitor
Cas No.:1234480-50-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cell experiment [1]: | |
Cell lines |
Human pancreatic cancer AsPC-1 cell line |
Preparation method |
The solubility of this compound in DMSO is >23.8 mg/ml. General tips for obtaining a higher concentration: Please warm the tube at 37℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months. |
Reacting condition |
10 and 15 μM for 48 h |
Applications |
Significant dose-dependent downregulation of DCLK1 mRNA and protein were observed following treatment with 10 and 15 μM of XMD8-92. Furthermore, a nearly 60% reduction in c-MYC, KRAS and NOTCH1 mRNA in AsPC-1 cells treated with XMD8-92 was also found. These data demonstrated that treatment AsPC-1 cells with XMD8-92 led to downregulation of DCLK1, c-MYC, KRAS and NOTCH1 mRNA. |
Animal experiment [1]: | |
Animal models |
HeLa, A549 and LL/2 xenograft mouse model |
Dosage form |
50 mg/kg twice a day |
Application |
It was found that vehicle-treated tumors grew exponentially throughout the experiment, whereas treatment with XMD8-92 not only arrested the tumor growth but resulted in decrease in the tumor volume. Moreover, treatment with XMD8-92 resulted in a significant (>80%) reduction in tumor volume compared to control tumors. In addition, more than 2-fold decrease in the tumor weight following treatment with XMD8-92 was observed. |
Other notes |
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal. |
References: [1] Sureban SM et al. XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Lett. 2014 Aug 28;351(1):151-61. |
IC50: XMD8-92 has been synthesized as a potent inhibitor of Mitogen-activated protein kinase 7 (MAPK7/BMK1; Kd = 80 nM). XMD8-92 blocks EGF-induced activation of BMK1 with IC50 of 240 nM [1].
The mitogen-activated protein kinases (MAPKs) are crucial components of signaling cascades that regulate numerous physiological processes. Four MAPK pathways have been identified thus far, including extracelluar-signal-regulated kinase 1/2 (ERK1/2), c-Jun-amino-terminal kinase (JNK), p38, and BMK1. XMD8-92 is a MAPKs kinase inhibitor with anti-cancer activity against lung and cervical cancers.
In vitro: In a previous study, XMD8-92 was shown to inhibit AsPC-1 cancer cell proliferation and tumor xenograft growth. In XMD8-92 treated tumors, significant downregulation of DCLK1was found and several of its downstream targets, including c-MYC, KRAS, NOTCH1, ZEB1, ZEB2, SNAIL, SLUG, OCT4, SOX2, NANOG, KLF4, LIN28, VEGFR1, and VEGFR2) via upregulation of tumor suppressor miRNAs, such as let-7a, miR-144, miR-200a-c, and miR-143/145. XMD8-92 was, however, not found to affect BMK1 downstream genes p21 and p53. These findings suggested that XMD8-92 treatment led to the inhibition of DCLK1 and downstream oncogenic pathways, which would be a promising chemotherapeutic agent against PDAC [2].
In vivo: In both immunocompetent and immunodeficient mice, XMD8-92 treatment was found to able to block the growth of lung and cervical xenograft tumors, respectively, by 95%. This remarkable anti-tumor effect of XMD8-92 in lung and cervical xenograft tumor models was due to its capacity to inhibit tumor cell proliferation through the PML suppressioninducted p21 checkpoint protein, as well as by blocking of the contribution of BMK1 in tumorassociated angiogenesis [3].
Clinical trial: XMD8-92 is still at preclinical development stage up to this point.
Reference:
[1] Yang Q, Lee JD. Targeting the BMK1 MAP kinase pathway in cancer therapy. Clin Cancer Res. 2011;17(11):3527-32.
[2] Sureban SM, May R, Weygant N, Qu D, Chandrakesan P, Bannerman-Menson E, Ali N, Pantazis P, Westphalen CB, Wang TC, Houchen CW. XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Lett. 2014;351(1):151-61.
[3] Yang Q, Deng X, Lu B, Cameron M, Fearns C, Patricelli MP, et al. Pharmacological inhibition of
BMK1 suppresses tumor growth through promyelocytic leukemia protein. Cancer Cell. 2010;18:258–67.
Cas No. | 1234480-50-2 | SDF | |
别名 | 2-[[2-乙氧基-4-(4-羟基-1-哌啶基)苯基]氨基]-5,11-二氢-5,11-二甲基-6H-嘧啶并[4,5-B][1,4]苯并二氮杂卓-6-酮 | ||
化学名 | 2-[2-ethoxy-4-(4-hydroxypiperidin-1-yl)anilino]-5,11-dimethylpyrimido[4,5-b][1,4]benzodiazepin-6-one | ||
Canonical SMILES | CCOC1=C(C=CC(=C1)N2CCC(CC2)O)NC3=NC=C4C(=N3)N(C5=CC=CC=C5C(=O)N4C)C | ||
分子式 | C26H30N6O3 | 分子量 | 474.57 |
溶解度 | ≥ 23.75 mg/mL in DMSO | 储存条件 | Store at 4°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.1072 mL | 10.5359 mL | 21.0717 mL |
5 mM | 0.4214 mL | 2.1072 mL | 4.2143 mL |
10 mM | 0.2107 mL | 1.0536 mL | 2.1072 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。