Home>>Signaling Pathways>> Microbiology & Virology>> SARS-CoV>>XR8-89

XR8-89

目录号 : GC67965

XR8-89 是一种有效的类木瓜蛋白酶 (PLpro) 抑制剂,其 IC50 值为 0.1 μM。XR8-89 诱导 SARS-COV-2 木瓜蛋白酶样蛋白酶的构象变化,抑制 SARS-COV-2 复制。XR8-89 可用于 SARS-CoV-2 研究。

XR8-89 Chemical Structure

Cas No.:2817811-16-6

规格 价格 库存 购买数量
10mg
¥6,120.00
现货
25mg
¥12,150.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

IC50: 0.1 μM (papain-like protease)[1]

XR8-89 is a potent papain-like protease (PLpro) inhibitor with an IC50 value of 0.1 μM. XR8-89 induces conformational changes in SARS-COV-2 papain-like protease, inhibiting SARS-CoV-2 replication. XR8-89 can be used for SARS-CoV-2 research[1].

XR8-89 induces conformational changes manly in BL2 region and increases the activity against PLpro[1].

[1]. Ferreira GM, et, al. Inhibitor induced conformational changes in SARS-COV-2 papain-like protease. Sci Rep. 2022 Jul 8;12(1):11585.

Chemical Properties

Cas No. 2817811-16-6 SDF Download SDF
分子式 C29H36N4O2S 分子量 504.69
溶解度 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9814 mL 9.9071 mL 19.8141 mL
5 mM 0.3963 mL 1.9814 mL 3.9628 mL
10 mM 0.1981 mL 0.9907 mL 1.9814 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Inhibitor induced conformational changes in SARS-COV-2 papain-like protease

Sci Rep 2022 Jul 8;12(1):11585.PMID:35803957DOI:PMC9270405

SARS-CoV-2's papain-like protease (PLpro) interaction with ligands has recently been explored with a myriad of crystal structures. We used molecular dynamics (MD) simulations to study different PLpro-ligand complexes, their ligand-induced conformational changes, and interactions. We focused on inhibitors reported with known IC50 against PLpro, namely GRL-0617, XR8-89, PLP_Snyder530, and Sander's recently published compound 7 (CPD7), and compared these trajectories against the apostructure (Apo), with a total of around 60 µs worth simulation data. We aimed to study the conformational changes using molecular dynamics simulations for the inhibitors in the PLpro. PCA analyses and the MSM models revealed distinct conformations of PLpro in the absence/presence of ligands and proposed that BL2-loop contributes to the accessibility of these inhibitors. Further, bulkier substituents closer to Tyr268 and Gln269 could improve inhibition of SARS-CoV-2 PLpro by occupying the region between BL2-groove and BL2-loop, but we also expand on the relevance of exploring multiple PLpro sub-pockets to improve inhibition.