YK11
目录号 : GC31442A partial agonist of the androgen receptor
Cas No.:1370003-76-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cell experiment: | Mouse myoblast C2C12 cells are cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C in a humidified atmosphere with 5% CO2. C2C12 cells are seeded on plates and maintained in culture medium for 24 h. To induce myogenic differentiation, YK11 or DHT in DMEM supplemented with 2% horse serum (differentiation medium) is added to the cells on day 0. For the neutralization assay of Fst (also known as activin-binding protein), C2C12 cells are maintained in differentiation medium in the presence of anti-Fst antibody[1]. |
References: [1]. Kanno Y, et al. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression. Biol Pharm Bull. 2013;36(9):1460-5. |
YK-11 is an androgen receptor partial agonist that activates androgen receptor transcriptional activity in HEK293 cells overexpressing androgen receptors when used at a concentration of 0.1 μM.1 It induces expression of the androgen receptor target genes FKBP51 and FGF18 in HEK293 cells when used at a concentration of 10 μM. YK-11 accelerates nuclear translocation of androgen receptors without inducing interaction between the androgen receptor N- and C-termini. In C2C12 cells, YK-11 (500 nM) increases expression of the myogenic regulatory factors MyoD, Myf5, and myogenin, as well as follistatin (Fst), and induces myogenic differentiation.2 YK-11 also accelerates proliferation and mineralization and increases expression of the osteoblast differentiation markers osteoprotegerin and osteocalcin in MC3T3-E1 mouse osteoblast cells.3
1.Kanno, Y., Hikosaka, R., Zhang, S.-Y., et al.(17α,20E)-17,20-[(1-Methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11) is a partial agonist of the androgen receptorBiol. Pharm. Bull.34(3)318-323(2011) 2.Kanno, Y., Ota, R., Someya, K., et al.Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expressionBiol. Pharm. Bull.36(9)1460-1465(2013) 3.Yatsu, T., Kusakabe, T., Kato, K., et al.Selective androgen receptor modulator, YK11, up-regulates osteoblastic proliferation and differentiation in MC3T3-E1 cellsBiol. Pharm. Bull.41(3)394-398(2018)
Cas No. | 1370003-76-1 | SDF | |
Canonical SMILES | O=C1CCC2C(CC[C@]3([H])[C@]2([H])CC[C@@]4(C)[C@@]3([H])CC[C@@]4(OC(C)(OC)O/5)C5=C/C(OC)=O)=C1 | ||
分子式 | C25H34O6 | 分子量 | 430.53 |
溶解度 | DMSO : ≥ 64 mg/mL (148.65 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3227 mL | 11.6136 mL | 23.2272 mL |
5 mM | 0.4645 mL | 2.3227 mL | 4.6454 mL |
10 mM | 0.2323 mL | 1.1614 mL | 2.3227 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Myostatin inhibitor YK11 as a preventative health supplement for bacterial sepsis
Muscle wasting caused by catabolic reactions in skeletal muscle is commonly observed in patients with sepsis. Myostatin, a negative regulator of muscle mass, has been reported to be upregulated in diseases associated with muscle atrophy. However, the behavior of myostatin during sepsis is not well understood. Herein, we sought to investigate the expression and regulation of myostatin in skeletal muscle in mice inoculated with gram-negative bacteria. Interestingly, the protein level of myostatin was found to increase in the muscle of septic mice simultaneously with an increase in the levels of follistatin, NF-κΒ, myogenin, MyoD, p- FOXO3a, and p-Smad2. Furthermore, the inhibition of myostatin by YK11 repressed the levels of pro-inflammatory cytokines and organ damage markers in the bloodstream and in the major organs of mice, which originally increased in sepsis; thus, myostatin inhibition by YK11 decreased the mortality rate due to sepsis. The results of this study suggest that YK11 may help revert muscle wasting during sepsis and subdue the inflammatory environment, thereby highlighting its potential as a preventive agent for sepsis-related muscle wasting.
Selective Androgen Receptor Modulator, YK11, Up-Regulates Osteoblastic Proliferation and Differentiation in MC3T3-E1 Cells
Androgens are key regulators that play a critical role in the male reproductive system and have anabolic effects on bone mineral density and skeletal muscle mass. We have previously reported that YK11 is a novel selective androgen receptor modulator (SARM) and induces myogenic differentiation and selective gene regulation. In this study, we show that treatment of YK11 and dihydrotestosterone (DHT) accelerated cell proliferation and mineralization in MC3T3-E1 mouse osteoblast cells. Further, YK11-treated cells increased osteoblast specific differentiation markers, such as osteoprotegerin and osteocalcin, compared to untreated cells. These observations were attenuated by androgen receptor (AR) antagonist treatment. To clarify the effect of YK11, we investigated rapid non-genomic signaling by AR. The phosphorylated Akt protein level was increased by YK11 and DHT treatment, suggesting that YK11 activates Akt-signaling via non-genomic signaling of AR. Because it is known Akt-signaling is a key regulator of androgen-mediated osteoblast differentiation, YK11 has osteogenic activity as well as androgen.
Differential DNA-binding and cofactor recruitment are possible determinants of the synthetic steroid YK11-dependent gene expression by androgen receptor in breast cancer MDA-MB 453 cells
Recently, selective androgen receptor modulators (SARMs), which bind to AR and act in a tissue/effect-specific manner, have been developed, but the selective mechanism is not well understood. In this study, we investigated the selective mechanism using the synthetic steroid YK11, which showed AR-mediated gene-selective transactivation. In the AR-positive human breast cancer MDA-MB-453 cells, different patterns of AR-mediated target gene expression and AR recruitment to their enhancer regions were observed between DHT and YK11. A docking study suggested the helices 11 and 12 was moved by the sterically hindered C17-group of YK11. Furthermore, the mutational studies of AR Gln902 and mammalian two-hybrid assays suggested different cofactor recruitment between DHT and YK11. The results of this study suggest that gene selective regulation by SARMs results from differential DNA-binding and/or cofactor recruitment by ligands. These results provide novel insights into the mechanism of action of SARMs.
Detection of SARMs in doping control analysis
The class of selective androgen receptor modulators (SARMs) has been the subject of intense and dedicated clinical research over the past two decades. Potential therapeutic applications of SARMs are manifold and focus particularly on the treatment of conditions manifesting in muscle loss such as general sarcopenia, cancer-associated cachexia, muscular dystrophy, etc. Consequently, based on the substantial muscle- and bone-anabolic properties of SARMs, these agents constitute substances with significant potential for misuse in sport and have therefore been added to the Word Anti-Doping Agency's (WADA's) Prohibited List in 2008. Since then, numerous adverse analytical findings have been reported for various different SARMs, which has underlined the importance of proactive and preventive anti-doping measures concerning emerging drugs such as these anabolic agents, which have evidently been misused in sport despite the fact that none of these SARMs has yet received full clinical approval. In this review, analytical data on SARMs generated in the context of research conducted for sports drug testing purposes are summarized and state-of-the-art test methods aiming at intact drugs as well as diagnostic urinary metabolites are discussed. Doping control analytical approaches predominantly rely on chromatography hyphenated to mass spectrometry, which have allowed for appropriately covering the considerable variety of pharmacophores present in SARMs such as the non-steroidal representatives ACP-105, BMS-564929, GLPG0492 (DT-200), LG-121071, LGD-2226, LGD-4033/VK 5211, ostarine/enobosarm, RAD-140, S-40503, etc. as well as steroidal compounds such as MK-0773 and YK-11.
Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression
The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11.