(Z)-Akuammidine
(Synonyms: 钩吻素丁,19-(Z)-Akuammidine; (Z)-Rhazine) 目录号 : GC60010(Z)-Akuammidine((Z)-Rhazine)分离于Gelsemiumelegans。
Cas No.:113973-31-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
(Z)-Akuammidine ((Z)-Rhazine) is isolated from Gelsemium elegans[1].
[1]. Zhang Q, Zhang B, Chou G, Wang Z. Zhongguo Zhong Yao Za Zhi. 2011;36(10):1305-1310
Cas No. | 113973-31-2 | SDF | |
别名 | 钩吻素丁,19-(Z)-Akuammidine; (Z)-Rhazine | ||
Canonical SMILES | O=C([C@@]1([C@@](CC2=C3NC4=CC=CC=C24)([H])[N@@](C/5)[C@H]3C[C@H]1C5=C\C)CO)OC | ||
分子式 | C21H24N2O3 | 分子量 | 352.43 |
溶解度 | 储存条件 | ||
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.8374 mL | 14.1872 mL | 28.3744 mL |
5 mM | 0.5675 mL | 2.8374 mL | 5.6749 mL |
10 mM | 0.2837 mL | 1.4187 mL | 2.8374 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Microfractionation bioactivity-based ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of nuclear factor-κB inhibitors and β2 adrenergic receptor agonists in an alkaloidal extract of the folk herb Alstonia scholaris
J Chromatogr B Analyt Technol Biomed Life Sci 2012 Nov 1;908:98-104.PMID:23122407DOI:10.1016/j.jchromb.2012.10.004.
Traditional Chinese medicines (TCMs) are generally considered complementary or alternative remedies in most Western countries. The constituents of TCMs are hard to define, and their efficacy is difficult to appraise. Thus, the development of suitable methods for evaluating the relationship between bioactivity and the chemical makeup of complex TCM mixtures remains a great challenge. In the present work, the bioactivity-integrated fingerprints of alkaloidal leaf extracts of Alstonia scholaris, a folk medicinal herb for chronic respiratory diseases, were established by ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF). This method was coupled with two dual-luciferase reporter assay systems to show nuclear factor-κB (NF-κB) inhibition and β(2) adrenergic receptor (β(2)AR) activation. Using UPLC-Q/TOF, 18 potential candidates were identified according to unique mass spectrometric fragmentation. After in vitro biological evaluation, several indole alkaloids with anti-inflammatory and anti-asthmatic properties were found, including akuammidine, (E)-alstoscholarine, and (Z)-alstoscholarine. Compared with conventional fingerprints, the microfractionation based bioactivity-integrated fingerprints that contain both chemical and bioactivity details offer a more comprehensive understanding of the chemical makeup of plant materials. This strategy clearly demonstrated that dual bioactivity-integrated fingerprinting is a powerful tool for the improved screening and identification of potential dual-target lead compounds in complex herbal medicines.
[Chemical constituents of aerial parts of Gelsemium elegans]
Zhongguo Zhong Yao Za Zhi 2011 May;36(10):1305-10.PMID:21837971doi
Objective: To study the chemical constituents from the aerial parts of Gelsemium elegans. Method: Compounds were isolated and purified by repeated column chromatography, as well as semiprep arative HPLC, and their structures were identified by physicochemical properties and spectroscopic methods, such as NMR and MS. Result: Sixteen compounds were obtained and identified from G. elegans, including nine alkaloids: koumine (1), gelsenicine (2), 19-(Z)-Akuammidine (3), gelsemoxonine(4), gelsemin (5), gelsevirine (6), humantenine (7), 11-methoxygelsemamide (8) and gelegamine D (9). Three megastigmane glycosides: (3R, 5S, 6S, 7E, 9R)-megastigman-7-ene-3, 5, 6, 9-tetrol-9-O-beta-D-glucopyranoside (10), (6R, 7E, 9R)-9-hydroxy-4, 7-megastigmadien-3-one-9-O-[alpha-L-arabinopyranosyl-(1 --> 6)-beta-D-glucopyranoside] (11) and (6S, 7E, 9R) -6, 9-dihydroxy-4, 7-megastigmadien-3-one-9-O-[alpha-L-arabinopyranosyl-(1 --> 6) -beta-D-glucopyranoside] (12). Two flavone C-glycosides: orientin (13) and isorientin (14); one iridoid glycoside, sweroside (15) and one fructoside, n-butyl-alpha-D-fructofuranoside (16). Conclusion: Compounds 10-16 were isolated from the genus Gelsemium for the first time.
Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. Leaves
PLoS One 2023 Mar 21;18(3):e0283147.PMID:36943850DOI:10.1371/journal.pone.0283147.
The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/Z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.