Home>>Lipids>> Lipid-Based Drug Delivery>>ZA3-Ep10

ZA3-Ep10 Sale

目录号 : GC64704

ZA3-Ep10是一种两性离子的脂质,用于合成脂质纳米颗粒,用于体内RNA传递和非病毒CRISPR/Cas基因编辑。

ZA3-Ep10 Chemical Structure

Cas No.:2090299-48-0

规格 价格 库存 购买数量
5 mg
¥4,050.00
现货
10 mg
¥7,200.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ZA3-Ep10 is a zwitterionic lipid used in lipid nanoparticles formulation for in vivo RNA delivery and non-viral CRISPR/Cas gene editing.

[1]. Cationic sulfonamide amino lipids and amphiphilic zwitterionic amino lipids. WO2017201076A1
[2]. Melamed JR, Hajj KA, Chaudhary N, et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2022;341:206-214.

Chemical Properties

Cas No. 2090299-48-0 SDF Download SDF
分子式 C66H138N6O9S 分子量 1191.9
溶解度 DMSO : ≥ 100 mg/mL (83.90 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.839 mL 4.195 mL 8.39 mL
5 mM 0.1678 mL 0.839 mL 1.678 mL
10 mM 0.0839 mL 0.4195 mL 0.839 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery

J Control Release 2022 Jan;341:206-214.PMID:34801660DOI:PMC8905090

Therapeutic mRNA has the potential to revolutionize the treatment of myriad diseases and, in 2020, facilitated the most rapid vaccine development in history. Among the substantial advances in mRNA technology made in recent years, the incorporation of base modifications into therapeutic mRNA sequences can reduce immunogenicity and increase translation. However, experiments from our lab and others have shown that the incorporation of base modifications does not always yield superior protein expression. We hypothesized that the variable benefit of base modifications may relate to lipid nanoparticle chemistry, formulation, and accumulation within specific organs. To test this theory, we compared IV-injected lipid nanoparticles formulated with reporter mRNA incorporating five base modifications (ψ, m1ψ, m5U, m5C/ψ, and m5C/s2U) and four ionizable lipids (C12-200, cKK-E12, ZA3-Ep10, and 200Oi10) with tropism for different organs. In general, the m1ψ base modification best enhanced translation, producing up to 15-fold improvements in total protein expression compared to unmodified mRNA. Expression improved most dramatically in the spleen (up to 50-fold) and was attributed to enhanced protein expression in monocytic lineage splenocytes. The extent to which these effects were observed varied with delivery vehicle and correlated with differences in innate immunogenicity. Through comparison of firefly luciferase and erythropoietin mRNA constructs, we also found that mRNA modification-induced enhancements in protein expression are limited outside of the spleen, irrespective of delivery vehicle. These results highlight the complexity of mRNA-loaded lipid nanoparticle drug design and show that the effectiveness of mRNA base modifications depend on the delivery vehicle, the target cells, and the site of endogenous protein expression.