ZL0454
目录号 : GC65204ZL0454是有效,选择性的含有溴结构域的蛋白质4 (BRD4)抑制剂,对BD1和BD2的IC50分别为49和32 nM 。
Cas No.:2229042-77-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
ZL0454 is a potent and selective Bromodomain-containing protein 4 (BRD4) inhibitor with an IC50 of 49 and 32 nM for BD1 and BD2.
[1]. Liu Z, et al. Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation. Eur J Med Chem. 2018 May 10;151:450-461.
Cas No. | 2229042-77-5 | SDF | Download SDF |
分子式 | C18H22N4O3S | 分子量 | 374.46 |
溶解度 | DMSO : 50 mg/mL (133.53 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.6705 mL | 13.3526 mL | 26.7051 mL |
5 mM | 0.5341 mL | 2.6705 mL | 5.341 mL |
10 mM | 0.2671 mL | 1.3353 mL | 2.6705 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Mucosal bromodomain-containing protein 4 mediates aeroallergen-induced inflammation and remodeling
J Allergy Clin Immunol 2019 Apr;143(4):1380-1394.e9.PMID:30321559DOI:10.1016/j.jaci.2018.09.029.
Background: Frequent exacerbations of allergic asthma lead to airway remodeling and a decrease in pulmonary function, producing morbidity. Cat dander is an aeroallergen associated with asthma risk. Objective: We sought to elucidate the mechanism of cat dander-induced inflammation-remodeling. Methods: We identified remodeling in mucosal samples from allergic asthma by using quantitative RT-PCR. We developed a model of aeroallergen-induced experimental asthma using repetitive cat dander extract exposure. We measured airway inflammation using immunofluorescence, leukocyte recruitment, and quantitative RT-PCR. Airway remodeling was measured by using histology, collagen content, myofibroblast numbers, and selected reaction monitoring. Inducible nuclear factor κB (NF-κB)-BRD4 interaction was measured by using a proximity ligation assay in situ. Results: Enhanced mesenchymal signatures are observed in bronchial biopsy specimens from patients with allergic asthma. Cat dander induces innate inflammation through NF-κB signaling, followed by production of a profibrogenic mesenchymal transition in primary human small airway epithelial cells. The IκB kinase-NF-κB signaling pathway is required for mucosal inflammation-coupled airway remodeling and myofibroblast expansion in the mouse model of aeroallergen exposure. Cat dander induces NF-κB/RelA to complex with and activate BRD4, resulting in modifying the chromatin environment of inflammatory and fibrogenic genes through its atypical histone acetyltransferase activity. A novel small-molecule BRD4 inhibitor (ZL0454) disrupts BRD4 binding to the NF-κB-RNA polymerase II complex and inhibits its histone acetyltransferase activity. ZL0454 prevents epithelial mesenchymal transition, myofibroblast expansion, IgE sensitization, and fibrosis in airways of naive mice exposed to cat dander. Conclusions: NF-κB-inducible BRD4 activity mediates cat dander-induced inflammation and remodeling. Therapeutic modulation of the NF-κB-BRD4 pathway affects allergen-induced inflammation, epithelial cell-state changes, extracellular matrix production, and expansion of the subepithelial myofibroblast population.
Efficacy of Novel Highly Specific Bromodomain-Containing Protein 4 Inhibitors in Innate Inflammation-Driven Airway Remodeling
Am J Respir Cell Mol Biol 2019 Jan;60(1):68-83.PMID:30153047DOI:10.1165/rcmb.2017-0445OC.
NF-κB/RelA triggers innate inflammation by binding to bromodomain-containing protein 4 (BRD4), an atypical histone acetyltransferase (HAT). Although RelA·BRD4 HAT mediates acute neutrophilic inflammation, its role in chronic and functional airway remodeling is not known. We observed that BRD4 is required for Toll-like receptor 3 (TLR3)-mediated mesenchymal transition, a cell-state change that is characteristic of remodeling. We therefore tested two novel highly selective BRD4 inhibitors, ZL0420 and ZL0454, for their effects on chronic airway remodeling produced by repetitive TLR3 agonist challenges, and compared their efficacy with that of two nonselective bromodomain and extraterminal (BET) protein inhibitors, JQ1 and RVX208. We observed that ZL0420 and ZL0454 more potently reduced polyinosinic:polycytidylic acid-induced weight loss and fibrosis as assessed by microcomputed tomography and second harmonic generation microscopy. These measures correlated with the collagen deposition observed in histopathology. Importantly, the ZL inhibitors were more effective than the nonselective BET inhibitors at equivalent doses. The ZL inhibitors had significant effects on lung physiology, reversing TLR3-associated airway hyperresponsiveness and increasing lung compliance in vivo. At the molecular level, ZL inhibitors reduced elaboration of the transforming growth factor-β-induced growth program, thereby preventing mucosal mesenchymal transition and disrupting BRD4 HAT activity and complex formation with RelA. We also observed that ZL0454 treatment blocked polyinosinic:polycytidylic acid-associated expansion of the α-SMA1+/COL1A+ myofibroblast population and prevented myofibroblast transition in a coculture system. We conclude that 1) BRD4 is a central effector of the mesenchymal transition that results in paracrine activation of myofibroblasts, mechanistically linking innate inflammation to airway hyperresponsiveness and fibrosis, and 2) highly selective BRD4 inhibitors may be effective in reversing the effects of repetitive airway viral infections on innate inflammation-mediated remodeling.
Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation
Eur J Med Chem 2018 May 10;151:450-461.PMID:29649741DOI:10.1016/j.ejmech.2018.04.006.
A series of diverse small molecules have been designed and synthesized through structure-based drug design by taking advantage of fragment merging and elaboration approaches. Compounds ZL0420 (28) and ZL0454 (35) were identified as potent and selective BRD4 inhibitors with nanomolar binding affinities to bromodomains (BDs) of BRD4. Both of them can be well docked into the acetyl-lysine (KAc) binding pocket of BRD4, forming key interactions including the critical hydrogen bonds with Asn140 directly and Tyr97 indirectly via a H2O molecule. Both compounds 28 and 35 exhibited submicromolar potency of inhibiting the TLR3-dependent innate immune gene program, including ISG54, ISG56, IL-8, and Groβ genes in cultured human small airway epithelial cells (hSAECs). More importantly, they also demonstrated potent efficacy reducing airway inflammation in a mouse model with low toxicity, indicating a proof of concept that BRD4 inhibitors may offer the therapeutic potential to block the viral-induced airway inflammation.
Pharmacoproteomics reveal novel protective activity of bromodomain containing 4 inhibitors on vascular homeostasis in TLR3-mediated airway remodeling
J Proteomics 2019 Aug 15;205:103415.PMID:31195152DOI:10.1016/j.jprot.2019.103415.
Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. We report a systems-level pharmacoproteomics in a standardized murine model of toll-like receptor TLR3-NFκB/RelA innate inflammation in the absence or presence of a highly selective BRD4 inhibitor (ZL0454) or nonselective bromodomain and extraterminal domain inhibitor (JQ1). Proteomics of bronchoalveolar lavage fluid (BALF) secretome and exosomal proteins from this murine model revealed increased, selective, capillary leak associated with pericyte-myofibroblast transition, a phenomenon blocked by BRD4 inhibitors. BALF proteomics also suggested that ZL0454 better reduced the vascular leakage and extracellular matrix deposition than JQ1. A significant subset of inflammation-mediated remodeling factors was also identified in a mouse model of idiopathic pulmonary fibrosis produced by bleomycin. BALF exosome analysis indicated that BRD4 inhibitors reduced the induction of exosomes enriched in coagulation factors whose presence correlated with interstitial fibrin deposition. Finally, BALF samples from humans with severe asthma demonstrated similar upregulations of ORM2, APCS, SPARCL1, FGA, and FN1, suggesting their potential as biomarkers for early detection of airway remodeling and/or monitoring of therapy response. SIGNIFICANCE: Repetitive and chronic viral upper respiratory tract infections trigger toll-like receptor (TLR)3-NFκB/RelA mediated airway remodeling which is linked to a progressive decline in pulmonary function in patients with asthma and chronic obstructive pulmonary disease. Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. Our study revealed that the activation of (TLR)3-NFκB/RelA pathway in the lung induced an elevation in coagulation, complement, and platelet factors, indicating the increased vascular leak during airway remodeling. The mechanism of vascular leakage was chronic inflammation-induced pericyte-myofibroblast transition, which was blocked by BRD4 inhibitors. Finally, proteomics analysis of the bronchoalveolar lavage fluid samples from humans with severe asthma demonstrated similar findings that we observed in the animal model.
Bromodomain Containing Protein 4 (BRD4) Regulates Expression of its Interacting Coactivators in the Innate Response to Respiratory Syncytial Virus
Front Mol Biosci 2021 Oct 26;8:728661.PMID:34765643DOI:10.3389/fmolb.2021.728661.
Bromodomain-containing protein 4 plays a central role in coordinating the complex epigenetic component of the innate immune response. Previous studies implicated BRD4 as a component of a chromatin-modifying complex that is dynamically recruited to a network of protective cytokines by binding activated transcription factors, polymerases, and histones to trigger their rapid expression via transcriptional elongation. Our previous study extended our understanding of the airway epithelial BRD4 interactome by identifying over 100 functionally important coactivators and transcription factors, whose association is induced by respiratory syncytial virus (RSV) infection. RSV is an etiological agent of recurrent respiratory tract infections associated with exacerbations of chronic obstructive pulmonary disease. Using a highly selective small-molecule BRD4 inhibitor (ZL0454) developed by us, we extend these findings to identify the gene regulatory network dependent on BRD4 bromodomain (BD) interactions. Human small airway epithelial cells were infected in the absence or presence of ZL0454, and gene expression profiling was performed. A highly reproducible dataset was obtained which indicated that BRD4 mediates both activation and repression of RSV-inducible gene regulatory networks controlling cytokine expression, interferon (IFN) production, and extracellular matrix remodeling. Index genes of functionally significant clusters were validated independently. We discover that BRD4 regulates the expression of its own gene during the innate immune response. Interestingly, BRD4 activates the expression of NFκB/RelA, a coactivator that binds to BRD4 in a BD-dependent manner. We extend this finding to show that BRD4 also regulates other components of its functional interactome, including the Mediator (Med) coactivator complex and the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) subunits. To provide further insight into mechanisms for BRD4 in RSV expression, we mapped 7,845 RSV-inducible Tn5 transposase peaks onto the BRD4-dependent gene bodies. These were located in promoters and introns of cytostructural and extracellular matrix (ECM) formation genes. These data indicate that BRD4 mediates the dynamic response of airway epithelial cells to RNA infection by modulating the expression of its coactivators, controlling the expression of host defense mechanisms and remodeling genes through changes in promoter accessibility.