Zymostenol
(Synonyms: Δ8-Cholesterol) 目录号 : GC40044A precursor of cholesterol
Cas No.:566-97-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Zymostenol is a late-stage precursor in the biosynthesis of cholesterol. It is an agonist of retinoic acid receptor-related orphan receptor γ (RORγ) with an EC50 value of 1 µM in a RORγ coactivator recruitment assay in the presence of ursolic acid . It increases the number of myelin basic protein-positive oligodendrocytes generated from oligodendrocyte precursor cells in vitro. Zymostenol accumulates in cells following administration of microsomal antiestrogen-binding site (AEBS) ligands, such as tamoxifen , which are associated with cell differentiation and a protective type of autophagy. When used alone at a concentration of 20 µM, zymostenol halts the cell cycle at the G0/G1 phase and increases the levels of free sterols, esterified sterols, and triacylglycerols in MCF-7 cells.
Cas No. | 566-97-2 | SDF | |
别名 | Δ8-Cholesterol | ||
Canonical SMILES | C[C@H](CCCC(C)C)[C@@]1([H])CC[C@@]([C@]1(C)CC2)([H])C3=C2[C@]4(C)[C@](CC3)([H])C[C@@H](O)CC4 | ||
分子式 | C27H46O | 分子量 | 386.7 |
溶解度 | DMF: 3 mg/ml,Ethanol: 2 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.586 mL | 12.9299 mL | 25.8598 mL |
5 mM | 0.5172 mL | 2.586 mL | 5.172 mL |
10 mM | 0.2586 mL | 1.293 mL | 2.586 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits
Int J Mol Sci 2022 Apr 10;23(8):4172.PMID:35456988DOI:10.3390/ijms23084172.
Squalene is a natural bioactive triterpene and an important intermediate in the biosynthesis of sterols. To assess the effect of this compound on the hepatic transcriptome, RNA-sequencing was carried out in two groups of male New Zealand rabbits fed either a diet enriched with 1% sunflower oil or the same diet with 0.5% squalene for 4 weeks. Hepatic lipids, lipid droplet area, squalene, and sterols were also monitored. The Squalene administration downregulated 9 transcripts and upregulated 13 transcripts. The gene ontology of transcripts fitted into the following main categories: transporter of proteins and sterols, lipid metabolism, lipogenesis, anti-inflammatory and anti-cancer properties. When the results were confirmed by RT-qPCR, rabbits receiving squalene displayed significant hepatic expression changes of LOC100344884 (PNPLA3), GCK, TFCP2L1, ASCL1, ACSS2, OST4, FAM91A1, MYH6, LRRC39, LOC108176846, GLT1D1 and TREH. A squalene-enriched diet increased hepatic levels of squalene, lanosterol, dihydrolanosterol, lathosterol, Zymostenol and desmosterol. Strong correlations were found among specific sterols and some squalene-changed transcripts. Incubation of the murine AML12 hepatic cell line in the presence of lanosterol, dihydrolanosterol, Zymostenol and desmosterol reproduced the observed changes in the expressions of Acss2, Fam91a1 and Pnpla3. In conclusion, these findings indicate that the squalene and post-squalene metabolites play important roles in hepatic transcriptional changes required to protect the liver against malfunction.
Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits
Food Funct 2021 Sep 7;12(17):8141-8153.PMID:34291245DOI:10.1039/d0fo01836h.
To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, Zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.
Effect of dietary macronutrients on intestinal cholesterol absorption and endogenous cholesterol synthesis: a randomized crossover trial
Nutr Metab Cardiovasc Dis 2021 May 6;31(5):1579-1585.PMID:33744041DOI:10.1016/j.numecd.2021.01.010.
Background and aims: Extensive research showed a diurnal rhythm of endogenous cholesterol synthesis, whereas recent research reported no diurnal rhythm of intestinal cholesterol absorption in males who consumed low-fat meals. Little is known about the acute effect of macronutrient consumption on cholesterol metabolism, and hence if meal composition may explain this absence of rhythmicity in cholesterol absorption. Therefore, we examined the effect of a high-fat, high-carbohydrate, and high-protein meal on postprandial intestinal cholesterol absorption and endogenous cholesterol synthesis in apparently healthy overweight and slightly obese males. Methods and results: Eighteen males consumed in random order an isoenergetic high-fat, high-carbohydrate, and high-protein meal on three occasions. Serum total cholesterol concentrations, cholesterol absorption markers (campesterol, cholestanol, and sitosterol), and cholesterol synthesis intermediates (7-dehydrocholesterol, 7-dehydrodesmosterol, desmosterol, dihydrolanosterol, lanosterol, lathosterol, Zymostenol, and zymosterol) were measured at baseline (T0) and 240 min postprandially (T240). Meal consumption did not significantly change total cholesterol concentrations and cholesterol absorption marker levels (all p > 0.05). Serum levels of 7-dehydrocholesterol, lanosterol, lathosterol, Zymostenol, and zymosterol decreased significantly between T0 and T240 (all p < 0.05). These decreases were not significantly different between the three meals (all p > 0.05), except for a larger decrease in dihydrolanosterol levels after the high-fat versus the high-carbohydrate meal (p = 0.009). Conclusion: The high-fat, high-carbohydrate, and high-protein meal did not significantly influence postprandial intestinal cholesterol absorption. Several cholesterol synthesis intermediates decreased postprandially, but the individual macronutrients did not differentially affect these intermediates, except for a possible effect on dihydrolanosterol. Trial registration: ClinicalTrials.gov, NCT03139890.
Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol
Chem Phys Lipids 2017 Oct;207(Pt B):51-58.PMID:28174017DOI:10.1016/j.chemphyslip.2017.01.006.
The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, Zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined.
Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells
Neuroscience 2010 Apr 28;167(1):143-53.PMID:20123000DOI:10.1016/j.neuroscience.2010.01.051.
Haloperidol exerts its therapeutic effects basically by acting on dopamine receptors. We previously reported that haloperidol inhibits cholesterol biosynthesis in cultured cells. In the present work we investigated its effects on lipid-raft composition and functionality. In both neuroblastoma SH-SY5Y and promyelocytic HL-60 human cell lines, haloperidol inhibited cholesterol biosynthesis resulting in a decrease of the cell cholesterol content and the accumulation of different sterol intermediates (7-dehydrocholesterol, Zymostenol and cholesta-8,14-dien-3beta-ol) depending on the dose of the drug. As a consequence, the cholesterol content in lipid rafts was greatly reduced, and several pre-cholesterol sterols, particularly cholesta-8,14-dien-3beta-ol, were incorporated into the cell membrane. This was accompanied by the disruption of lipid rafts, with redistribution of flotillin-1 and Fyn and the impairment of insulin-Akt signaling. Supplementing the medium with free cholesterol abrogated the effects of haloperidol on lipid-raft composition and functionality. LDL (low-density lipoprotein), a physiological vehicle of cholesterol in plasma, was much less effective in preventing the effects of haloperidol, which is attributed to the drug's inhibition of intracellular vesicular trafficking. These effects on cellular cholesterol homeostasis that ultimately result in the alteration of lipid-raft-dependent insulin signaling action may underlie some of the metabolic effects of this widely used antipsychotic.